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1. Introduction

The celebrated theorem of Roth [15] asserts that every subset of {1, . . . , N} that
does not contain any three-term arithmetic progression has size O(N/ log logN).

There are numerous refinements of Roth’s result [2, 3, 9, 27]. Currently, the

best known upper bound O(N/(logN)1−o(1)) is due to Sanders [23]. A compre-

hensive history of the subject can be found in [28].

It turns out that Roth’s method gives a similar upper bound for the size of

sets having no nontrivial solutions to a invariant linear equation, namely an

equation of the form

(1) a1x1 + · · ·+ akxk = 0,

with a1 + · · · + ak = 0, k > 3 (three-term arithmetic progressions correspond

to the equation x + y = 2z). On the other hand, the well-known construction

of Behrend [1, 7, 10, 13, 14, 18, 19] provides large sets having no solution to

a certain kind of invariant equations. He showed that there are subsets of

{1, . . . , N} of size Ne(−Cb,k

√
logN) without solution to the invariant equation

(2) a1x1 + · · ·+ akxk = by,

where a1 + · · ·+ ak = b, ai > 0.

The aim of this paper is to establish a new upper bound for subsets of

{1, . . . , N} having no solution to an invariant equation in at least 6 variables.

Theorem 1.1: Let N and k > 6 be positive integers. Let A ⊆ {1, . . . , N} be a

set having no solution to equation (1), where all x1, . . . , xk are distinct integers.

Then

(3) |A| ≪ exp
(
− c

(
logN

)1/7)
N,

where c = c(a1, . . . , ak).

Observe that Theorem 1.1 together with Behrend’s example give a reasonable

estimate for all equations of the type (2). Let us also formulate an immediate

corollary to Theorem 1.1 for the equation

(4) x1 + x2 + x3 + x4 + x5 = 5y

which is very close to the most intriguing case x+ y = 2z.
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Corollary 1.2: Suppose that A ⊆ {1, . . . , N} has no solution to equation (4)

with distinct integers. Then there exists a constant c > 0 such that

|A| ≪ exp
(
− c

(
logN

)1/7)
N.

Our argument also uses the density increment method introduced by Roth,

however in a different way. The density increment is not deduced from the

existence of a large Fourier coefficient of a set A, |A| = αN, having no solution

to an equation (1) (which is always the case). We will be rather interested in

finding a translation of a large Bohr set in a1 · A + a2 · A + a3 · A + a4 · A.
Recent work of Sanders [22] (see also [24]) on the Polynomial Freiman–Ruzsa

Conjecture guarantees the existence of such a Bohr set (actually we need a local

version of Sanders theorem, which is proved in Section 5). Then, we show that

A has a large density increment, by a constant factor, on a translation of some

large Bohr set. By Sanders’ theorem the dimension of the Bohr set increases by

O(log4(1/α)) in each iteration step, which makes the argument very effective.

The paper is organized as follows. We start with proving analogues of Theo-

rem 1.1 and Corollary 1.2 for finite fields in Section 3. The argument is especially

simple and clear in this case. Theorem 1.1 is proved in the next three sections.

In Section 4 we recall some basic properties of Bohr sets in abelian groups. In

Section 5 we prove a local version of Sanders’ result. The next section contains

the proof of Theorem 1.1. We conclude the paper with a discussion concerning

consequences of a version of the Polynomial Bogolyubov Conjecture for sets

having no solutions to an invariant linear equation with distinct integers.

2. Notation

Let G = (G,+) be a finite Abelian group with additive group operation +,

and let N = |G|. By Ĝ we denote the Pontryagin dual of G, i.e., the space of

homomorphisms γ from G to S1. It is well known that Ĝ is an additive group

which is isomorphic to G. The Fourier coefficients of f : G → C are defined by

f̂(γ) =
∑

x∈G

f(x)γ(x).

By the convolution of two function f, g : G → C we mean

(f ∗ g)(x) =
∑

y∈G

f(y)g(x− y).
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It is easy to see that f̂ ∗ g(γ) = f̂(γ)ĝ(γ). If X is a nonempty set, then by µX

we denote the uniform probability measure on X and let

Spec ǫ(µX) := {γ ∈ Ĝ : |µ̂X(γ)| > ǫ}.

Let Zp = Z/pZ, and F∗
p = Zp \ {0}. If A is a set, then we write A(x) for

its characteristic function, i.e., A(x) = 1 if x ∈ A and A(x) = 0 otherwise. All

logarithms are to base 2. The signs ≪ and ≫ are usual Vinogradov’s symbols.

3. Finite fields model

In this section we present proofs of Corollary 1.2 and Theorem 1.1 in a finite

fields setting. Here we assume that a1, . . . , ak ∈ F∗
p. The case of Fn

p , in view of

its linear space structure over Fp, is considerably simpler than the case of Z.

Even the simplest version of Roth’s argument yields the estimate Op(p
n/nk−2)

for the size of sets free of the solution to (1) (see [12, 11], [20], [21]).

Our main tool is the following finite fields version of Sanders’ theorem [22].

The interested reader will find all details of the proof in Section 5.

Lemma 3.1: Let K,L be real numbers. Suppose that A,S, T ⊆ Fn
p are finite

non-empty sets such that |A+S| 6 K|A|, |S+T | 6 L|S|. Then A−A+S−S con-

tains a subspace V of codimension at most Op(log
3 K logL+ log(2µ

−1/2
Fn
p

(T ))).

The proof of the next theorem illustrates the main idea of our approach.

Theorem 3.2: Suppose that A ⊆ Fn
p , p 6= 5, and A has no nontrivial solution

to (4) with xi 6= y for some i. Then

|A| 6 pn · exp(−cp(log p
n)1/5)

for some positive constant cp.

Proof. Suppose that A ⊆ Fn
p has density α and contains no solution to (4).

We split A into two disjoint sets A1, A2 of sizes that differ by at most one.

Assuming the cardinality of A is large enough, we have
∑

z

|A1 ∩ (z −A2)| = |A1||A2| > |A|2/16 ≫ α2p2n,

thus there exists z ∈ Fn
p such that

|A1 ∩ (z −A2)| ≫ α2pn.



Vol. xxx, 2014 ROTH’S THEOREM IN MANY VARIABLES 5

Putting B = A1 ∩ (z − A2), we have |B| ≫ α2pn, and thus |B + B| 6 pn ≪
α−2|B|.
By Lemma 3.1 applied with A = S = T = B, there exists a subspace V of

codimension at most Op(log
4(1/α)) such that V ⊆ 2B − 2B, so that

2z + V ⊆ 2A1 + 2A2.

Therefore, in view of A1 ∩ A2 = ∅, we have 5y − x 6∈ 2z + V for all x, y ∈ A,

hence for each w, if A ∩ (V + w) 6= ∅ then 5 · A ∩ (V + w + 2z) = ∅. Similarly,

if 5 · A ∩ (V + w + 2z) 6= ∅ then A ∩ (V + w) = ∅. Hence

2αpn = 2|A| =
∑

w∈V ⊥

(|A ∩ (V + w)|+ |5 · A ∩ (V + w + 2z)|)

6|V |−1pnmax
v

|A ∩ (v + V )|,

which implies

|A ∩ (v + V )| > 2α|V |,
for some v. Thus, (A − v) ∩ V is free of solutions to (4) and has density at

least 2α on V. After t iterations we obtain a subspace of codimension at most

Op(t · log4(1/α)) such that

|(A− vt) ∩ Vt| > 2tα|Vt|,

for some vt. Since the density is always at most one we can iterate this procedure

at most log(1/α) + 1 times. Hence

(log(1/α) + 1) · log4(1/α) ≫p n,

so that

α 6 exp(−cpn
1/5)

for some positive constant

Lemma 3.3: Let A1, . . . , Ak ⊆ Fn
p be sets of density at least α. Then

A1 − A1 + · · · + Ak − Ak contains a subspace V of codimension at most

Op(k
−3 log4(1/α)).

Proof. We have

|A1| 6 |A1 +A2| 6 · · · 6 |A1 + · · ·+Ak| 6 α−1|A1|,

so that there exists 2 6 i 6 k such that

|A1 + · · ·+Ai| 6 α−1/(k−1)|A1 + · · ·+Ai−1|.
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Thus, setting A = A1+ · · ·+Ai−1, S = T = Ai, we have |A+S| 6 α−1/(k−1)|A|,
|S + T | 6 α−1|S|, and |T | > αpn. Then applying Lemma 3.1, we infer that

there is a subspace V of codimension

Op(log
3(α−1/(k−1)) · log(1/α)) = Op(k

−3 log4(1/α))

such that

v + V ⊆ A1 −A1 + · · ·+Ai −Ai ⊆ A1 −A1 + · · ·+Ak −Ak,

and the assertion follows.

Theorem 3.4: Suppose that A ⊆ Fn
p has no solution with distinct elements to

an invariant equation

(5) a1x1 + · · ·+ akxk = 0,

where a1, . . . , ak ∈ F∗
p and k > 6. Then

|A| 6 kpn · exp(−cp(k
3 log pn)1/5)

for a positive constant cp.

Proof. Suppose A ⊆ Fn
p has no solution with distinct elements to (5) and |A| =

αpn. Let A1, . . . , A2l, l = ⌊(k − 2)/2⌋ be arbitrary disjoint subsets of A of size

⌊|A|/(5k)⌋ and put A′ = A \⋃Ai. As in (3) for any i ∈ [l], we have
∑

zi

|(a2i−1 ·A2i−1) ∩ (zi − a2i ·A2i)| = |A2i−1||A2i| ≫ (α/k)2p2n

and, clearly, there are z1, . . . , zl such that

|(a2i−1 ·A2i−1) ∩ (zi − a2i ·A2i)| ≫ (α/k)2pn,

and let Bi, 1 6 i 6 l, be the sets on the left-hand side in the above inequalities,

respectively. By Lemma 3.3, applied for B1, . . . , Bl and K = O((k/α)2), there

is a subspace V of codimension d = Op(k
−3 log4(k/α)) such that

V ⊆ B1 −B1 + · · ·+Bl −Bl,

so that

v + V ⊆ a1 ·A1 + · · ·+ ak−2 ·Ak−2

for some v. Since A does not contain any solution to (5) with distinct elements

it follows that

ak−1x+ aky /∈ v + V,
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for all x, y ∈ A′, x 6= y. Hence, if for some w the coset w + V contains at least

2 elements of A′, then −a−1
k (ak−1w − v) + V is disjoint from A′. The number

of cosets of V sharing exactly 1 element with A is trivially at most pd. Thus,

there exists w′ such that

|A′ ∩ (w′ + V )| > (4/5)αpn − pd

pd/2
|V |,

which is at least (3/2)α|V |, provided that

(6) pn−d ≫ α−1.

After t iterates of this argument we obtain a subspace Vt of codimension

Op(tk
−3 log4(k/α)) such that

|(A− vt) ∩ Vt| > (3/2)tα|Vt|.

Since (3/2)tα 6 1 it follows that t 6 2 log(1/α). Thus (6) must be violated

after at most 2 log(1/α) steps, in particular pn−2 log(1/α)d ≪ α−1, so that

k−3 log(1/α) log4(k/α) ≫p n/2.

Hence α 6 k exp(−cp(k
3 log pn)1/5).

4. Basic properties of Bohr sets

Bohr sets were introduced to additive number theory by Ruzsa [16]. Bourgain

[2] was the first to use Fourier analysis on Bohr sets to improve the estimate in

Roth’s theorem. Sanders [22] further developed the theory of Bohr sets proving

many important theorems; see, for example, Lemma 5.4 below.

Let Γ be a subset of Ĝ, |Γ| = d, and ε = (ε1, . . . , εd) ∈ (0, 1]d.

Definition 4.1: Define the Bohr set B = B(Γ, ε) setting

B(Γ, ε) = {n ∈ G : ‖γj(n)‖ < εj for all γj ∈ Γ},

where ‖x‖ = | argx|/2π.
The number d is called the dimension of B and is denoted by dimB. If

M = B+n, n ∈ G is a translation of a Bohr set B, we put dimM = dimB. The

intersection B ∧ B′ of two Bohr sets B = B(Γ, ε) and B′ = B(Γ′, ε′) is the

Bohr set with the generating set Γ∪Γ′ and a new vector ε̃ with ε̃j = min{εj, ε′j}
if γj ∈ Γ ∩ Γ′; further, ε̃j = εj, γj ∈ Γ \ Γ′ and ε̃j = ε′j , γj ∈ Γ′ \ Γ. We write

B′ 6 B for two Bohr sets B = B(Γ, ε), B′ = B(Γ′, ε′) if Γ ⊆ Γ′ and ε′j 6 εj,
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j ∈ [dimB]. Thus B′ 6 B implies that B′ ⊆ B and always B ∧ B′ 6 B,B′.

Furthermore, if B = B(Γ, ε) and ρ > 0, then by Bρ we mean B(Γ, ρε).

Definition 4.2: A Bohr set B = B(Γ, ε) is called regular, if for every η, d|η| 6
1/100 we have

(7) (1 − 100d|η|)|B1| < |B1+η| < (1 + 100d|η|)|B1|.

We formulate a sequence of basic properties of Bohr (see [2]), which will be

used later.

Lemma 4.3: Let B(Γ, ε) be a Bohr set. Then there exists ε1 such that ε/2 <

ε1 < ε and B(Γ, ε1) is regular.

Lemma 4.4: Let B(Γ, ε) be a Bohr set. Then

|B(Γ, ε)| > N

2

d∏

j=1

εj .

Lemma 4.5: Let B(Γ, ε) be a Bohr set. Then

|B(Γ, ε)| 6 8|Γ|+1|B(Γ, ε/2)|.

Lemma 4.6: Suppose that B(1), . . . , B(k) is a sequence of Bohr sets. Then

µG

( k∧

i=1

B(i)

)
>

k∏

i=1

µG(B
(i)
1/2).

The next lemma is due to Bourgain [2]. It shows the fundamental property

of regular Bohr sets. We recall his argument for the sake of completeness.

Lemma 4.7: B = B(Γ, ε) be a regular Bohr set. Then for every Bohr set

B′ 6 B(Γ, ε′) such that ε′ 6 κε/(100d) we have:

(1) the number of n’s such that (B ∗B′)(n) > 0 does not exceed |B|(1+κ);

(2) the number of n’s such that (B ∗B′)(n) = |B′| is greater than |B|(1−κ)

and

(8) ‖µB ∗ µB′ − µB‖1 < 2κ.

Proof. If (B ∗B′

)(n) > 0, then there exists m such that for any γj ∈ Γ we have

‖γj ·m‖ <
κ

100d
εj , ‖γj · (n−m)‖ < εj ,
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so that

‖γj · n‖ <
(
1 +

κ

100d

)
εj,

for all γj ∈ Γ. Therefore n ∈ B+ := B
(
Γ,

(
1 + κ

100d

)
ε
)
and since B is regular

by (7) we have |B+| 6 (1 + κ)|B|. This proves (1).
To prove (2) observe that if

n ∈ B− := B
(
Γ,

(
1− κ

100d

)
ε
)
,

then (B ∗B′

)(n) = |B′|. By (7) we have |B−| > (1− κ)|B|.
To prove (8) note that

‖µB ∗ µB′ − µB‖1 = ‖µB ∗ µB′ − µB‖l1(B+\B−) 6
|B+| − |B−|

|B| < 2κ,

as required.

Corollary 4.8: With the assumptions of Lemma 4.7 we have |B| 6 |B+B′| 6
|B+| 6 (1 + κ)|B|.

Another useful corollary is the following.

Corollary 4.9: Let f : G → C be a function such that |f(x)| 6 1 for every

x ∈ G. With the assumptions of Lemma 4.7, we have

(9) ‖µB · f − µB ∗ µB′ · f‖1 < 2κ.

Proof. Indeed, we have

‖µB · f − µB ∗ µB′ · f‖1 =

∣∣∣∣
∑

x

(µB − µB ∗ µB′)(x)f(x)

∣∣∣∣

6
∑

x

|(µB − µB ∗ µB′)(x)|

=‖µB − µB ∗ µB′‖1 < 2κ,

as required.

Inequality (9) holds if we replace

‖µB · f − µB ∗ µB′ · f‖1
by

‖µB ∗ f − µB ∗ µB′ ∗ f‖∞.

We do not need the fact in our proof.
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Notice that for every γ ∈ Z∗
p and a Bohr set B(Γ, ε) ⊆ Zp we have γ ·B(Γ, ε) =

B(γ−1 · Γ, ε). Thus, if B(Γ, ε) is regular, then γ · B(Γ, ε) is regular as well.

5. A variant of Sanders’ theorem

Recall that an arithmetic progression of dimension d and size L is a set of the

form

(10) P = {a0 + a1x1 + · · ·+ adxd : 0 6 xj < lj},

where L = l1 . . . ld; P is said to be proper if all of the sums in (10) are distinct.

By a proper coset progression of dimension d we will mean a subset of G

of the form P +H , where H ⊆ G is a subgroup, P is a proper progression of

dimension d and the sum is direct in the sense that p+ h = p′ + h′ if and only

if h = h′ and p = p′. By the size of a proper coset progression we mean simply

its cardinality.

Very recently Sanders [22] proved the following remarkable result.

Theorem 5.1: Suppose that G is an abelian group and A,S ⊆ G are finite

non-empty sets such that |A + S| 6 Kmin{|A|, |S|}. Then (A−A) + (S − S)

contains a proper symmetric d(K)-dimensional coset progression M of size

exp(−h(K))|A + S|. Moreover, we may take d(K) = O(log6 K), and h(K) =

O(log6 K log logK).

The aim of this section is to show the following modification of Sanders’

theorem which is crucial for our argument.

Theorem 5.2: Let ε, δ ∈ (0, 1] be real numbers. Let A,A′ be subsets of a

regular Bohr set B and let S, S′ be subsets of a regular Bohr set Bε, where ε 6

1/(100d) and d = dimB. Suppose that µB(A), µB(A
′), µBε(S), µBε(S

′) > α.

Then the set (A − A′) + (S − S′) contains a translation of a regular Bohr set

z + B̃ such that dimB̃ = d+O(log4(1/α)) and

(11)

|B̃| > exp(−O(d log d+d log(1/ε)+log4(1/α) log d+log5(1/α)+d log(1/α)))|B|.

Observe that the statement above with O(d4 + log4(1/α)) instead of

d + O(log4(1/α)) is a direct consequence of Theorem 5.1 (see the beginning

of the proof of Theorem 5.2).
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Next we formulate two results, which will be used in the course of the proof

of Theorem 5.2. The first lemma coincides with Proposition 3.2 from Sanders’

paper [22] and is a version of the Croot–Sisask theorem [6].

Lemma 5.3: Suppose that G is a group, A,S, T ⊆ G are finite non-empty sets

such that |A + S| 6 K|A| and |T + S| 6 L|S|. Let ǫ ∈ (0, 1] and let h be a

positive integer. Then there is t ∈ T and a set X ⊆ T − t with

|X | > exp(−O(ǫ−2h2 logK logL))|T |

such that

|µ−A ∗ (A+ S) ∗ µ−S(x) − 1| 6 ǫ for all x ∈ hX.

The next lemma is a special case of Lemma 5.3 from [22]. This is a local

version of Chang’s spectral lemma [5], which is another important result recently

proved in additive combinatorics.

Lemma 5.4: Let ǫ, ν, ρ be positive real numbers. Suppose that B is a regular

Bohr set and let X ⊆ B. Then there is a set Λ of size O(ǫ−2 log(2µ
−1/2
B (X)))

such that for any γ ∈ Spec ǫ(µX) we have

|1− γ(x)| = O(|Λ|(ν + ρdim2(B))) for all x ∈ Bρ ∧B′
ν ,

where B′ = B(Λ, 1/2).

Proof of Theorem 5.2. Let T = Bδ, δ = ε/100d and K = L = O(1/α). In the

notation of section 4, we have A+S ⊆ B+Bε ⊆ B+, and S+T ⊆ Bε+Bδ ⊆ B+
ε ,

whence |A+S| 6 K|A|, |S+T | 6 L|S| by the regularity of B and Bε. Applying

Lemma 5.3 with A, S and T , we see that there exist t ∈ T and X ⊆ Bδ − t

satisfying

(12) |X | > exp(−O(ǫ−2h2 log2 K))|Bδ|,

and

(13) |µ−A ∗ (A+ S) ∗ µ−S(x)− 1| 6 ǫ/3 for all x ∈ hX.

By Lemma 4.3 we may assume that Bδ is regular.

Let ǫ be a small positive constant to be specified later. Put h = ⌈log(K/ǫ)⌉
and l = O(ǫ−4h2 log2 K). Applying Lemma 5.4 for X+ t ⊆ Bδ with parameters

ν = O(ǫ/(lK1/2)), ρ = O(ǫ/(ld2K1/2)), we obtain

(14) |1− γ(x)| 6 ǫ/(3K1/2) for all x ∈ Bδρ ∧B′
ν and γ ∈ Spec ǫ(µX).
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Recall that B′ = B(Λ, 1/2), and |Λ| = l. We have dim(Bδρ ∧ B′
ν) =

d+O(log4(1/α)).

By the same argument applied for sets A′, S′ there are sets X ′, Λ′ of cardi-

nality l and a Bohr set B∗
ν that satisfy inequalities (12) and (14), respectively.

Finally, we set

B′′ = Bδρ ∧B′
ν ∧B∗

ν .

Clearly, d′′ = dimB′′ = d + O(log4(1/α)) and by Lemma 4.4, Lemma 4.5,

Lemma 4.6 and ǫ = Ω(1) we have

(15)

|B′′| > exp(−O(d log d+d log(1/ε)+log4(1/α) log d+log5(1/α)+d log(1/α)))|B|.

In view of the inequality

∑

γ

| ̂(A+ S)(γ)µ̂A(γ)µ̂S(γ)| 6
(|A+ S||A|)1/2

|S| 6 K1/2,

which follows from the Cauchy–Schwarz inequality and Parseval’s formula, we

may proceed in the same way as in the proof of Lemma 9.2 in [22] and conclude

that for any probability measure µ supported on B′′ we have

(16) ‖(A+ S) ∗ µ‖∞ > 1− ǫ and ‖(A′ + S′) ∗ µ‖∞ > 1− ǫ.

Let η = 1/4d′′. We show that (A − A′) + (S − S′) contains a translation of

B̃ := B′′
η .

Indeed, note that

B′′
1/2 ⊆ B′′

1/2+η ⊆ · · · ⊆ B′′
1/2+2d′′η = B′′,

so that by the pigeonhole principle, there is some i 6 2d′′ such that |B′′
1/2+iη | 6√

2|B′′
1/2+(i−1)η|. We apply (16) for

µ =
B′′

1/2+iη +B′′
1/2+(i−1)η

|B′′
1/2+iη|+ |B′′

1/2+(i−1)η|
.

Thus, there is x such that

|(x +A+ S) ∩B′′
1/2+iη|+ |(x+A+ S) ∩B′′

1/2+(i−1)η|

> (1 − ǫ)
(
|B′′

1/2+iη|+ |B′′
1/2+(i−1)η|

)
.
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Taking ǫ sufficiently small (see [22] for details), we get

|(x +A+ S) ∩B′′
1/2+iη| >

3

4
|B′′

1/2+(i−1)η|,

|(x+A+ S) ∩B′′
1/2+(i−1)η| >

3

4
|B′′

1/2+(i−1)η|.

Analogously, for some y, we obtain

|(y +A′ + S′) ∩B′′
1/2+iη| >

3

4
|B′′

1/2+(i−1)η|,

|(y +A′ + S′) ∩B′′
1/2+(i−1)η| >

3

4
|B′′

1/2+(i−1)η|.

Hence for each b ∈ B̃, we have

(A+ S) ∗ (−A′ − S′)(b + y − x)

=(x+A+ S) ∗ (−y −A′ − S′)(b)

>((x+A+ S) ∩B′′
1/2+iη) ∗ ((−y − A− S) ∩B′′

1/2+(i−1)η)(b)

>|(x+A+ S) ∩B′′
1/2+iη|+ |(y +A+ S) ∩B′′

1/2+(i−1)η|
− |((x +A+ S) ∩B′′

1/2+iη) ∩ ((−y −A− S) ∩B′′
1/2+iη)|

>
3

2
|B′′

1/2+(i−1)η| − |B′′
1/2+iη| > 0.

Therefore, (A−A′) + (S − S′) contains a translation of B̃. Finally, by Lemma

4.3, there is 1/2 6 σ 6 1 such that B̃σ is regular. By (15) and Lemma 4.5, B̃σ

also satisfies (11). This completes the proof.

6. Proof of the main result

Let A ⊆ {1, . . . , N} be a set having no solution to (1). As usual we embed A in

Zp, where p is a prime between (
∑ |ai|)N and 2(

∑ |ai|)N , so A has no solution

to (1) in Zp. All sets considered below are subsets of Zp. We start with the

following simple observation.

Lemma 6.1: Let B be a regular Bohr set of dimension d and let B′ 6 Bρ, where

ρ 6 α/(1600d). Suppose that µB(A), µB(A
′) > α. Then there exists x ∈ B

such that

(17) (µB′ ∗A)(x), (µB′ ∗A′)(−x) > α/4

or

(18) ‖µB′ ∗A‖∞ > 1.5α or ‖µB′ ∗A′‖∞ > 1.5α.
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Proof. By Corollary 4.9 we have

α 6
∑

x∈B

µB(x)A(x) 6 ‖µB ·A− µB ∗ µB′ ·A‖1 +
∑

x∈B

(µB ∗ µB′)(x)A(x)

6
1

8
α+

1

|B|
∑

x∈B

(µB′ ∗A)(x),

and similarly

α 6
1

8
α+

1

|B|
∑

x∈B

(µB′ ∗A′)(x) =
1

8
α+

1

|B|
∑

x∈B

(µB′ ∗A′)(−x).

Hence
∑

x∈B

((µB′ ∗A)(x) + (µB′ ∗A′)(−x)) >
7

4
α|B|

and the result follows.

Theorem 1.1 is a consequence of the next lemma.

Lemma 6.2: Suppose that B is a regular Bohr set of dimension d and A ⊆ B,

µB(A) > α has no solution with distinct elements to (1). Assume that

(19) |B| > exp(C(d log d+ log5(1/α) + d log(1/α) + log d log4(1/α))),

where C = C(k) > 0 is a large constant. Then there exists a regular Bohr set

B′ such that

(20) ‖µB′ ∗A‖∞ > (1 + 1/(16k))α,

dimB′ = d+ O(log4(1/α)), and

(21) |B′| > exp(−O(d log d+ log5(1/α) + d log(1/α) + log d log4(1/α)))|B|.

Proof. Set M =
∏ |ai| and choose a constant 1/64 6 c 6 1/32 in such a way

that Bε is a regular Bohr set, where ε = cα/(100Mdk). Furthermore, define

Bi = (
∏

j 6=i aj) · Bε. Observe that by Lemma 4.5 it follows that

(22) |Bε/2| > exp(−O(d log d+ d log(1/α))|B|.
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By Corollary 4.9 we have

kα 6k
∑

x∈B

µB(x)A(x)

6

k∑

i=1

‖µB · A− µB ∗ µBi ·A‖1 +
k∑

i=1

∑

x∈B

(µB ∗ µBi)(x)A(x)

6200εkdM +
1

|B|
∑

x∈B

k∑

i=1

(µBi ∗A)(x),

so that
k∑

i=1

(µBi ∗A)(w) > (k − 2c)α > (k − 1/16)α

for some w ∈ B. Thus, for η = 1/(16k), either we have ‖µBi ∗A‖∞ > (1 + η)α

for some 1 6 i 6 k, or

(µBi∗A)(w) = µBi(A+w) = µB′(ai·(A+w)) > (k−1/16)α−(k−1)(1+η)α >
7

8
α

for every i, where B′ = (
∏

aj) · Bε. In the first case, in view of dimB′ = d

and (22), we are done because we achieve the required density increment on a

large Bohr set, so we may assume that the last inequalities hold. Since (1) is an

invariant equation we may translate our set and assume that µB′(ai ·A) > 7α/8

for all 1 6 i 6 k.

Let B′
ε/2 ⊆ B′′ ⊆ B′

ε and B′′
ε/2 ⊆ B′′′ ⊆ B′′

ε be regular Bohr sets. By

regularity of B′ and Lemma 6.1 applied for A = a1 ·A, A′ = a2 ·A and B′ = B′′,

either (18) holds, and again we are done, or there exists x ∈ B′ with

(23) µB′′+x(a1 ·A) > α/8 and µB′′−x(a2 · A) > α/8.

We show that there are disjoint sets A1, A2 of A such that

(24) α/32 6 µB′′+x(a1 · A1) 6 α/16 and α/32 6 µB′′−x(a2 · A2) 6 α/16.

Indeed, let

Q1 = {q ∈ A : a1 · q ∈ B′′ + x}, Q2 = {q ∈ A : a2 · q ∈ B′′ − x}.

By (23) we have |Q1|, |Q2| > α|B′′|/8. If |Q1 ∩ Q2| > α|B′′|/16, then split

Q1 ∩ Q2 into two parts A1, A2 whose sizes differ by at most one. Otherwise,

we put A1 = Q1 \Q2, A2 = Q2 \Q1 and delete unnecessary elements from the

sets.
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Put A′ = A \ (A1 ∪ A2); then µB′(ai · A′) > 3α/4 for i > 3. Again applying

Lemma 6.1 for B′′′ and the arguments above, we find y ∈ B′ and disjoint sets

A3, A4 ⊆ A′ such that

(25) α/32 6 µB′′′+y(a3 · A3) 6 α/16 and α/32 6 µB′′′−y(a4 · A4) 6 α/16.

Assume that k is even and set l = (k− 6)/2. Using very similar arguments as

above (based on Lemma 6.1), one can find y1, . . . , yl ∈ Zp and distinct elements

x5, . . . , xk−2 ∈ A \ (A1 ∪ A2 ∪ A3 ∪ A4) such that

(26) a5x5,−a6x6 ∈ B′′ + y1, . . . , ak−3xk−3,−ak−2xk−2 ∈ B′′ + yl.

Finally, by Theorem 5.2 applied with

a1 ·A1 − x ⊆ B′′, −a2 ·A2 − x ⊆ B′′, a3 · A3 − y ⊆ B′′′, −a4 ·A4 − y ⊆ B′′′,

there exists a Bohr set B̃ 6 B′′ and z such that

(27) B̃ + z ⊆ a1 ·A1 + a2 ·A2 + a3 ·A3 + a4 ·A4 +

k−2∑

j=5

ajxj ,

d̃ = dimB̃ = d+O(log4(1/α)) and

(28)

|B̃| > exp(−O(d log d+ d log(1/ε) + log5(1/α)

+ d log(1/α) + log d log4(1/α)))|B′′|
> exp(−O(d log d+ log5(1/α) + d log(1/α) + log d log4(1/α)))|B|.

If the sum over j in (27) is empty, then we define it to be equal to zero. Notice

that by (26), z ∈ (k − 4)B′′ + 2B′′′ ⊆ kB′′. Since A1, . . . , A4 are disjoint and

x5, . . . , xk−2 ∈ A \ (A1 ∪ A2 ∪ A3 ∪ A4) are distinct, it follows that

(29) ak−1xk−1 + akxk /∈ B̃ − z

for all distinct xk−1, xk ∈ (A \ (A1 ∪ A2 ∪ A3 ∪A4)) \ {x5, . . . , xk−2}.
By Lemma 4.3 we find α/(6400d) 6 δ 6 α/(3200d) such that B̃δ is regular.

Obviously B̃δ satisfies (28). For i = k − 1 and k, write

Ei := {x ∈ B′ : (µB̃δ
∗ (ai · A))(x) > k/|B̃δ|}.

Observe that by (29), if −z ∈ Ek−1+Ek, then one can find a solution to (1) with

distinct x1, . . . , xk ∈ A. Therefore Ek−1 ⊆ B′ \ (−Ek − z), and since z ∈ kB′′
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and the Bohr set B′ is regular, we have

|Ek−1| 6|B′ \ (−Ek − z)| = |B′| − |B′ ∩ (Ek + z)|
6|B′| − (|Ek| − |(B′ + kB′′) \B′|)
6|B′| − |Ek|+ 100εdk|B′|,

whence

|Ek−1|+ |Ek| 6 (4/3)|B′|,
so that |Ei| 6 (2/3)|B′| for some i ∈ {k, k + 1}. Thus, by Corollary 4.9

7

8
α 6

∑

x∈B′

µB′(x)(ai · A)(x)

6
1

|B′|
∑

x∈B′

µB̃δ
(x)(ai · A)(x) + ‖µB′ ∗ µB̃δ

· (ai ·A)− µB̃δ
· (ai · A)‖1

6µB′(Ei)‖µB̃δ
∗ (ai · A)‖∞ +

k

|B̃δ|
+ 200δd

6
2

3
‖µB̃δ

∗ (ai ·A)‖∞ +
k

|B̃δ|
+

1

16
α.

By Lemma 4.5, (19) and (28), we have

|B̃δ| > exp(−O((d + log4(1/α))(log(1/α) + log d))|B̃|
> exp(−O(d log d+ log5(1/α) + d log(1/α) + log d log4(1/α)))|B|
>16k/α,

hence

‖µB̃δ
∗ (ai ·A)‖∞ >

9

8
α.

Finally

‖µB∗ ∗A‖∞ >
9

8
α,

where B∗ = a−1
i · B̃δ, and the assertion follows.

Now suppose that k is odd. Only the first part of the proof needs to be

slightly modified. Certainly, we may assume that a5 = 1. Proceeding ex-

actly as before we find regular Bohr sets B′, B′′ and B′′′, and disjoint sets

A1, A2, A3, A4 ⊆ A such that µB′(ai · A) > 7α/8 and (24), (25) hold. Fur-

thermore, for l = (k − 7)/2 > 0, we find y1, . . . , yl ∈ Zp and distinct elements

x5, . . . , xk−2 ∈ A \ (A1 ∪ A2 ∪ A3 ∪ A4) such that

x5 ∈ B′′, a6x6,−a7x7 ∈ B′′ + y1, . . . , ak−3xk−3,−ak−2xk−2 ∈ B′′ + yl.
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By Theorem 5.2 there exists a Bohr set B̃ satisfying (27)–(29). However,

x5 ∈ B′′, so that again z ∈ kB′′, which was the only thing we have to check.

One can finish the proof in exactly the same way as before.

Proof of Theorem 1.1. Let A ⊆ B0 = Zp, |A| > αp. We apply iteratively

Lemma 6.2. After t steps we obtain a regular Bohr set Bt and xt ∈ Zp such

that

|A ∩ (Bt + xt)| > (1 + 1/(16k))tα|Bt|,
dimBt ≪ t log4(1/α), and

|Bt| > exp(−O(t log5(1/α)))|Bt−1|.

Since the density is always less than 1 we may apply Lemma 6.2 at most

O(log(1/α)) times. Therefore, after t = O(log(1/α)) iterates, the assumptions

of Lemma 6.2 are violated, so that

exp(−O(log7(1/α)))p 6 |Bt| 6 exp(O(log6(1/α))),

which yields

α ≪ exp(−c(log p/ log log p)1/6),

and the assertion follows.

7. The Polynomial Bogolyubov Conjecture and linear equations

The Polynomial Bogolyubov Conjecture can be formulated as follows.

Conjecture 7.1: Let A ⊆ ZN , |A| = αN . Then there exists a Bohr set

B(Γ, ε) ⊆ 2A− 2A such that |Γ| = d ≪ log(1/α) and ε ≫ 1/ log(1/α).

It is known (see [8]) that the Polynomial Bogolyubov Conjecture implies the

well known Polynomial Freiman–Ruzsa Conjecture.

For every Bohr set we have

|B(Γ, ε)| > 1

2
εdN,

so that Conjecture 7.1 would give a nontrivial result provided that

α ≫ N−c/ log logN . However, it was proved in [25] and [26] that in Chang’s

lemma (which is an important ingredient of all results of this sort, see Section

5) one can take much larger ε. This gives a (little) support for the following

version of the above conjecture for sparse sets.
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Conjecture 7.2: Let A,A′ ⊆ ZN , |A|, |A′| > N1−c. Then there exists a

δc logN -dimensional Bohr set B ⊆ A − A + A′ − A′ such that |B| ≫ N1−c′

and δc → 0, c′ → 0 with c → 0. Furthermore, each b ∈ B has ≫ |A|2|A′|2/N
representations in the form a− b+ a′ − b′, a, b ∈ A, a′, b′ ∈ A′.

We shall give here an application of Conjecture 7.2. First we recall some

definitions from [17]. Let

(30) a1x1 + · · ·+ akxk = 0

be an invariant linear equation. We say that the solution x1, . . . , xk of (30) is

trivial if there is a partition {1, . . . , k} = T1∪· · ·∪Tl into nonempty and disjoint

sets Tj such that xu = xv if and only if u, v ∈ Tj for some j and
∑

i∈Tj

ai = 0,

for every 1 6 j 6 l. The genus of (30) is the largest g such that there is a

partition {1, . . . , k} = T1∪· · ·∪Tg into nonempty and disjoint sets Tj such that
∑

i∈Tj

ai = 0,

for every 1 6 j 6 g. Let r(N) be the maximum size of a set A ⊆ {1, . . . , N}
having no nontrivial solution to (30) with xi ∈ A and let R(N) be the analogous

maximum over sets such that equation (30) has no solution with distinct xi ∈ A.

It is not hard to prove that r(N) ≪ N1/g. Much less is known about the

behavior of R(N). Bukh [4] showed that we always have R(N) ≪ N1/2−ε for

the symmetric equations

a1x1 + · · ·+ alxl = a1y1 + · · ·+ alyl.

Our result is the following.

Theorem 7.3: Assuming Conjecture 7.2 we have

R(N) ≪ N1−c,

for every invariant equation (30)with a1=−a2, a3=−a4, where c=c(a1, . . . , ak).

Proof. Suppose that A has no solution to an equation (30) with a1 = −a2,

a3 = −a4, where c = c(a1, . . . , ak), and assume that |A| ≫ N1−c, c > 0. We

embed A in ZM with M = SN, where S =
∑ |ai|, so that any solution to (30)
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in ZM is a genuine solution in Z. Let A = A1 ∪ A2 be a partition of A into

roughly equal parts. If Conjecture 7.2 holds, then there is a Bohr set

B ⊆ a1 · A1 − a1 · A1 + a3 ·A1 − a3 ·A1

of dimension at most δc logN and size at least ≫ N1−c′ . Put B′ = B1/S . We

show that for every t ∈ ZM we have

|(t+B′) ∩ A2| 6 k − 4.

Indeed, if there are distinct x5, . . . , xk ∈ (t+B′) ∩ A2, then

k∑

i=5

aixi ∈
( k∑

i=5

ait
)
+B = B.

However, each element in B has at least |A|4/M representations in the form

a1x− a1y + a3z − a3w, x, y, z, w ∈ A1. This would give a solution to (30) with

distinct integers. Hence

|B′||A2| =
∑

t

|(t+B′) ∩ A2| 6 kM,

so

|A| 6 2kSN/|B′|.
Now, by Lemma 4.5 it follows that |B′| ≫ S−4d|B| ≫ N1−c′−2δc log S . This

leads to a contradiction, provided c is small enough.
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