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Abstract
We prove, in particular, that every finite subset A of an abelian group with the additive energy
k|AJ® contains a set A’ such that |[A’| > k|A| and |A' — A'| < k™1 A|.

1 Introduction

Balog-Szemerédi-Gowers theorem [2], [4] is one of the most important tool in additive combinatorics.
It asserts that very finite subset A of an abelian group with large additive energy E(A) i.e. with many
solutions to the equation x +y = 2’ + ¢/, contains a large subset A’ with small sumset A’ + A’. This
result has huge number of deep applications, see for example [3], [4]. The first effective bound on the size
of A and A’ + A’ was given by Gowers and since then the theorem was improved many times and the
currently best estimate is due to Balog [1]. He showed, in particular, that if E(A) = x|A[?> then there
exists A’ C A such that |A’| > k|A| and |4’ — A'| < k76|4/|.
Here we prove two theorems, which provides further improvements.

Theorem 1.1 Let A be a subset of an abelian group such that E(A) = k|A|3. Then there exists A’ C A
such that |A'| > k|A| and
A — A < kA

Theorem 1.2 Let A be a subset of an abelian group such that E(A) = k|A[3. Then there exist A', B’ C A
such that |A'|,|B'| > &3/*1og=>/*(1/k)|A| and
A" = B'| < &7 1og®2(1/k)(|A'||B'|)!/* .

Theorem 2 provides stronger estimates, however Theorem 1 allows us to take A’ = B’. Our general
strategy is essentially still the same as in [1], [2], [4], [6] i.e. we show that each element from A’ — A’ has
many representations in the form (a; — as) — (a3 — a4), a1, as, a3, a4 € A. Our improvements comes from
considering different candidates for A’. In previous works the authors looked for A’ among dense subsets
of AN(P+s), where P C A— A is the popular difference set. Here we will pick A’ C AN(A+ s). Bounds
in Theorem 2 follows from combining both methods.

Notation. Let A be a finite subset of an abelian group G. We will write A(x) for the indicator

function of the set A. Define
(AxB)(x) = Y _ A(y)B(z —y)
yeG
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(Ao B)( ZA Bz +vy),
yeG

so that (A o B)(x) is the number of representations in the form z =b—a, a € A,b € B, while (A * B)(x)
is the number of representations in the form z =b+a, a € A,b € B. For 8 € R put

Es(A)=> (Ao A)(x)’.

x

Note that E(A) = E3(A). By log we always mean log, .

2 Proof of Theorem 1.1

We start with a variant of Sanders lemma [5]. Let P, be the set of y—popular differences i.e. the set of
all « such that (Ao A)(x) > ~|A|.

Lemma 2.1 Let A be a finite subset of an abelian group G and let ¢ > 0. Suppose that E(A) = k| A[>.
Then there exists a set X C A of size at least %H|A| such that

> (X 0 X)(2)Pux () > (1 — 16¢)| X|*.

x

Proof. Observe that

Y (AoA)@) ,@-|A| Z (Ao A)(z) = TP = %E(A) (1)

(AoA) ()< hxlA|

For 0 < i < [log(1/k)], let Q; = {x : 277 1|A| < (Ao A)(z) < 27 A|}. Hence, putting §; = k1272 in
view of (1) we have

A E(4) _1
0i|Qi| = = —|4]|.
Z ‘Q | |A|2 Z 921 |Q | 2K‘A|2 2| |
Let S be the set of all pairs (a,b) € A% such that a — b € P... Then

Dol A=D)NQiI< Y [(A—a)N(A—b)| < enlAl|S] < er| AP

i (a,b)€S (a,b)eS

Therefore, there exists ¢ such that

D (A=) N (A=b)N Qi < 2ek4,| Qi I A (2)

(a,b)eS

Put Q = Qi,, A =27, 6 =6;, and N = |Q|. We choose at random s € G such that

for every z € G. Set X = AN (A + s) and observe that a € X if and only if a € A and s € a — A, hence

Ala)[(a = A) N Q| _ Ala)(A*Q)(a)
N N ’

Pla € X) =

and

EX|=N"Y (AxQ)(a)=N""> (Ao A)(z) > %)\\AL

a€A T€EQ
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Let T be the set of all pairs (a,b) € X? such that a — b & P.,. Then
Pla,be X)=N"1 > Q@) =N'"A-a)n(A-b)nQ,
z€(A—a)N(A-D)
so that by (2) we have
E[T|= > PlabeX)=N" > [(A=a)N(A-b)NQ| < 2rd|A]> =2c\*|A]".
(a,b)es (a,b)es
Therefore 1
E(IXP? ~ (160)77]) > £A?IA2,
so there exists s such that
2 ~1 Lo
X~ (166) 1T > (37|42
In particular, | X| > %ﬁ/\\m > 1k|A| and |T'| < 16¢|X|?, which completes the proof. [ |

Proof of Theorem 1.1. Let X be a set given by Lemma 2.1 applied for ¢ = 1/128, and consider the

following graph

H= {(x,y) €X2: (Ao A)(z—y) > ﬁlgmm}.

By Lemma 2.1 H has at least (7/8)|X|? edges. Denote by A’ the set of all elements z € X of degree at
least (3/4)|X| in H. Then clearly |A’| > |X|/2 > k|A|. Take any a,b € A’, then there are at least | X|/2
elements y € Y such that (a,y), (b,y) € H. Therefore

a=b=(a—-y)—=(b-y)
has > k3| A|? representations in the form (a; — az) — (a3 — a4), a1, as,as,aq € A. Thus
KBAPIA - A < |A]

and the assertion follows. [ |

3 Proof of Theorem 1.2

We will need another version of Lemma 2.1 that make use of the Ez-energy.
Lemma 3.1 Let A be a finite subset of an abelian group G and let ¢ > 0. Suppose that E(A) = k|A|?
and E3(A) = Mr?*|A|*. Then there exist Mk < A< 1, and X C A of size at least $\|A| such that
D (X o X)(x)Py(x) > (1 - 16¢)|X|?,
where v = cMr?X71.
Proof. Note that the straightforward inequalities (E(A4)/|A|)? < E3(A) < |A|E(A) imply that 1 < M <

k1. In view of E(A) = k|A|?, we have

> (Ao A)(2)> = Es(A)— > (Ao A)(z)®

(AoA)(z)> 1 Mk|A| (AoA)(z)< i Mr|A|

E5(4) — 5 MrlA| (40 4)(x)? = JE5(4). 3)

WV
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For 0 < i < [log(M/k)], let Q; = {z : 2771 A] < (Ao A)(z) < 27¢|Al}. Putting &, = k= 2M 1273 by
(3) we have

A]® Es(A4) 1
Zsz‘QJ = 2M|A‘3 Z 231 |QZ = HZT|A|3 2 §|A|

Again, let S be the set of all pairs (a,b) € A? such that a — b ¢ P,. Using similar argument as in Lemma
2.1 we infer that there exists A > M such that for @ = {z : $\|A| < (Ao A)(z) < AJA|} we have

S (A a) A (45N Q| < 29eN] AP,
(a,b)eS

where ¢ = k7 2M ~1)\3 and N := |Q|. Again we choose at random s € G such that

for every z € G. Put X = AN (A + s) and observe that
EX|=N"Y (A%Q)(a >4 )\\A|
acA zeQ

Let T be the set of all pairs (a,b) € X? such that a — b & P,. Then E|T| < 2ve|A|? = 2cA?| A%, so that
1
E(XP — (1607 [T)) > SN[
Thus, there exists s such that |X| > A|A| and |T'| < 16¢|X |2, |

The next lemma is Corollary 6.20 in [7].

Lemma 3.2 Let H = (A, B, E) be a bipartite graph with |E| > |A||B|/M. Then there exist A C A, B’ C
B with |A'| > |A|/6M ,|B’| = |B|/6M such that every a € A’ and b € B’ is connected by at least
|A||B|/2¥2M* paths of length three.

Proof of Theorem 1.2. Assume that and E3(A) = Mx?|A|%. Similarly as in the proof of Theorem 1.1
let X and A > Mk be given by Lemma 3.1 applied for ¢ = 1/128, and consider the graph

1
16

By Lemma 3.1 H has at least (7/8)|X|? edges. Denote by A’ the set of all elements 2 € X of degree at
least (3/4)|X| in H. Then clearly |A’| > |X|/2 > A|A|. Take any a,b € A’, then there are at least | X|/2
elements y € Y such that (a,y), (b,y) € H. Therefore

a—b=(a-y)—(b—y)

has > x3|A|? representations in the form (a; — az) — (a3 — a4), a1, a2, as,as € A. Thus

H={(e,y) € X*: (A0 A)w—y) > MK\ 1[A]}.

A" = Al < M2k 1A (4)
In the next step of the proof we obtain another estimate. Observe that
Es(4)

1
> AeAw? < i~ e,
(AcA)(z)>2Mk|A|
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Therefore there exists /2 < p < 2Mk such that for Q = {z : p|A| < (Ao A)(x) < 2ulA|} we have

S (Ao A)x) >

z€Q

K 2
5
ulOgM\ | (5)

Let G = (A, A, E) (here we can assume that the vertex set of G consists of two disjoint copies of A, for
details see [7]) be a bipartite graph such that E = {{a,b} : a,b € A, a — b € Q}, so that by (5) |E| =
alA]2 > ku~t(log M)~1|AJ?. Therefore, by Lemma 3.2 there are sets A, B' C A with |A'],|B’| > alA]
such that every a € A’ and b € B’ is connected by > «*|A||B| paths of length three in G. Therefore, for
each a € A’ and b € B’ there are > o*|A||B| elements x,y € A such that {a,y}, {z,y}, {z,b} € G. Thus

a—b=(a—y)—(@—y)+(x—0)

has > 13| A|2a*| A|? representations in the form (a1 —as) — (a3 —a4) + (a5 — ag), a1, as, a3, aq, as, ag € A.
Hence

A — B| < =% YA] < p3a S A B2 < w3 MPlog® M| B2 (6)
We use (4) if ks /4log™>*(1/k) < M < k™1, while we use (6) if 1 < M < s /*log™>*(1/k). In the

former case we have s/

4| = |B| > Ma|A| > — | 4|
log”"(1/k)
and in the latest one
1|8’ A G
A
LB oAl > s L
which completes the proof. |
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