On the Littlewood conjecture in $\mathbb{Z} / p \mathbb{Z}$

By
Tomasz Schoen*

Abstract

We show that for every set $A \subseteq \mathbb{Z} / p \mathbb{Z}$ we have $\left\|\widehat{1}_{A}\right\|_{1}:=\frac{1}{p} \sum_{r=0}^{p-1}\left|\sum_{a \in A} e^{2 \pi i r a / p}\right| \gg$ $(\log |A|)^{1 / 16-o(1)}$.

1 Introduction

The following conjecture, known as the Littlewood conjecture, was posed in [6]: for every finite set of integers A we have

$$
\int_{0}^{1}\left|\sum_{a \in A} e^{2 \pi i a x}\right| d x \gg \log |A|
$$

This conjecture attracted attention of many mathematicians (see for example [1], [3], [4], [11]) and finally it was confirmed independently by McGehee, Pigno and Smith [10] and Konyagin [7]. Green and Konyagin asked an analogues question in discrete case for subsets of $\mathbb{Z} / p \mathbb{Z}$: is it true that

$$
\left\|\widehat{1}_{A}\right\|_{1}:=\frac{1}{p} \sum_{r=0}^{p-1}\left|\sum_{a \in A} e^{2 \pi i r a / p}\right| \gg \log |A|
$$

They proved [5] that

$$
\left\|\widehat{1}_{A}\right\|_{1} \gg \delta\left(\frac{\log p}{\log \log p}\right)^{1 / 3}
$$

then this estimate was improved by Sanders [12]

$$
\left\|\widehat{1}_{A}\right\|_{1} \gg\left(\frac{\log p}{(\log \log p)^{3}}\right)^{1 / 2}
$$

for sets with positive density. Konyagin and Shkredov [8] solved the problem for sparse sets with size $|A| \leqslant e^{(\log p)^{1 / 3-o(1)}}$. Furthermore, Konyagin and Shkredov [8], [9] proved the following results, which we will use later.

[^0]Theorem 1.1 Let A be a subset of $\mathbb{Z} / p \mathbb{Z}$. If $e^{(\log p)^{1 / 3}} \leqslant|A| \leqslant p / 3$ then

$$
\begin{equation*}
\left\|\widehat{1}_{A}\right\|_{1} \gg(\log (1 / \delta))^{1 / 3-o(1)} \tag{1}
\end{equation*}
$$

if $\delta \geqslant(\log p)^{-1 / 4}(\log \log p)^{1 / 2}$ then

$$
\left\|\widehat{1}_{A}\right\|_{1} \gg \delta^{3 / 2}(\log p)^{1 / 2-o(1)}
$$

if $\delta<(\log p)^{-1 / 4}(\log \log p)^{1 / 2}$ then

$$
\left\|\widehat{1}_{A}\right\|_{1} \gg \delta^{1 / 2}(\log p)^{1 / 4-o(1)}
$$

The above results provides polylogarithmic lower bounds for sparse and very dense sets, however they gives very poor estimates for sets with density

$$
e^{-(\log p)^{\varepsilon}}<\delta<(\log p)^{-1 / 2+\varepsilon} .
$$

Our aim is to prove the following theorem.
Theorem 1.2 Let A be a subset of $\mathbb{Z} / p \mathbb{Z}$. Then

$$
\left\|\widehat{1}_{A}\right\|_{1} \gg(\log |A|)^{1 / 16-o(1)},
$$

as $|A| \rightarrow \infty$.
We will use the following notation. Let G be a finite abelian group. For a function $f: G \rightarrow \mathbb{C}$ we set

$$
\begin{gathered}
\|f\|_{L^{q}}=\left(\frac{1}{|G|} \sum|f(x)|^{q}\right)^{1 / q} \\
\|f\|_{\ell^{q}}=\left(\sum|f(x)|^{q}\right)^{1 / q}
\end{gathered}
$$

and if $\gamma \in \widehat{G}$ ia a character of G then we define the Fourier coefficient by

$$
\widehat{f}(\gamma)=\frac{1}{|G|} \sum_{x} f(x) \overline{\gamma(x)} .
$$

The convolution of two functions $f, g: G \rightarrow \mathbb{C}$ is defined by

$$
(f * g)(t)=\sum_{x \in G} f(x) g(t-x)
$$

for $t \in G$. Furthermore, we will write 1_{A} for the indicator function of a set A and $\left\|\widehat{1}_{A}\right\|_{1}$ for $\left\|\widehat{1}_{A}\right\|_{\ell^{1}}$.

2 Auxiliary Lemmas

We apply a quasi-periodic lemma due to Croot, Laba and Sisask [2]. To formulate this result we need some basic properties of Bohr sets contained in a finite abelian group G. For a set of characters $\Gamma \subseteq \widehat{G}$ and $0<\varepsilon \leqslant 1 / 2$ we define

$$
B(\Gamma, \varepsilon)=\{x \in G:|\gamma(x)-1| \leqslant \varepsilon \text { for all } \gamma \in \Gamma\}
$$

The size of Γ is the rank of B and ε is its radius. Furthermore, for all ε and Γ we have $B(\Gamma, \varepsilon) \geqslant$ $(\varepsilon / 2 \pi)^{|\Gamma|}|G|$, see [13].

Lemma 2.1 Let $q>2$ and $0<\varepsilon<1$ be parameters. Let G be a finite abelian group and let $f: G \rightarrow \mathbb{C}$. Then there exists a Bohr set B of rank $\ll q / \varepsilon^{2}$ and radius $\gg \varepsilon$ such that for each $t \in B$

$$
\|f(x+t)-f(x)\|_{L^{q}} \leqslant \varepsilon\|\widehat{f}\|_{1}
$$

Corollary 2.2 Suppose that A is a subset of finite abelian group $G,|A|=\delta|G|$ and that $\max _{t \neq 0}\left(1_{A} * 1_{-A}\right)(t)<(1-\beta)|A|$ for some $0<\beta \leqslant 1$. Then

$$
\left\|\widehat{1}_{A}\right\|_{1} \gg\left(\frac{\log |G|}{\log (1 / \beta \delta) \log \log |G|}\right)^{1 / 2}
$$

Proof. We apply Lemma 2.1 with $f=1_{A}$ and ε, q to be determined later. Let B be a Bohr set given by the lemma. Observe that for each $t \in G$

$$
\left\|1_{A}(x+t)-1_{A}(x)\right\|_{L^{q}}^{q}=2|G|^{-1}\left(|A|-\left(1_{A} * 1_{-A}\right)(t)\right)
$$

hence, for every $t \in B$

$$
\left(1_{A} * 1_{-A}\right)(t) \geqslant|A|-\frac{1}{2} \varepsilon^{q}\left\|\widehat{1}_{A}\right\|_{1}^{q}|G|
$$

By our assumption $\left(1_{A} * 1_{-A}\right)(t)<(1-\beta)|A|$ for every $t \neq 0$, so if $t \in B \backslash\{0\}$ then $\varepsilon^{q}\left\|\widehat{1}_{A}\right\|_{1}^{q}|G| \geqslant$ $\beta|A|$, hence

$$
\left\|\widehat{1}_{A}\right\|_{1} \geqslant(\beta \delta)^{1 / q} \varepsilon^{-1}
$$

Taking $q=\log (1 / \beta \delta)$ and $\varepsilon=c\left(\frac{\log |G|}{q \log \log |G|}\right)^{-1 / 2}$, we see that $|B|>1$ and it gives the required bound.

Put $A_{d}=A \cap(A+d)$. The next lemma provides a straightforward dependence between $\left\|\widehat{1}_{A}\right\|_{1}$ and $\left\|\widehat{1}_{A_{d}}\right\|_{1}$, which is very important in our approach.

Lemma 2.3 Let A be a finite subset of $\mathbb{Z} / p \mathbb{Z}$. Then for every $d \in A-A$ we have

$$
\left\|\widehat{1}_{A}\right\|_{1} \geqslant\left\|\widehat{1}_{A_{d}}\right\|_{1}^{1 / 2}
$$

Proof. We have

$$
\widehat{1}_{A_{d}}(r)=\frac{1}{p} \sum_{x} 1_{A}(x) 1_{A}(x-d) e^{-2 \pi i r x / p},
$$

and applying the Fourier inversion formula $1_{A}(x)=\sum_{r=0}^{p-1} \widehat{1}_{A}(r) e^{2 \pi i r x / p}$ we see that

$$
\widehat{1}_{A_{d}}(r)=\sum_{s} \widehat{1}_{A}(s) \widehat{1}_{A}(r-s) e^{2 \pi i d(r-s) / p},
$$

hence

$$
\left\|\widehat{1}_{A_{d}}\right\|_{1} \leqslant \sum_{r} \sum_{s}\left|\widehat{1}_{A}(s)\left\|\widehat{1}_{A}(r-s) \mid=\right\| \widehat{1}_{A} \|_{1}^{2}\right.
$$

and the assertion follows.

3 Proof of Theorem 1.2

In view of Theorem 1.1 we can restrict our attention to sets with density

$$
e^{-(\log p)^{1 / 4}}<\delta<(\log p)^{-1 / 4} .
$$

By Cauchy-Davenport theorem (see [13]) we have

$$
|A-A| \geqslant \min (2|A|-1, p) \geqslant \frac{3}{2}|A|,
$$

provided that $|A| \geqslant 2$, so there exists $d \in A-A$ such that

$$
\left|A_{d}\right|=\left(1_{A} * 1_{-A}\right)(d) \leqslant \frac{|A|^{2}}{\frac{3}{2}|A|}=\frac{2}{3}|A| .
$$

We put $B=A \backslash A_{d}$ and observe that $|B| \geqslant \frac{1}{3}|A|$ and $d \notin B-B$. We consider two cases. First, let us assume that $\max _{t \neq 0}\left(1_{B} * 1_{-B}\right)(t)<(1-\beta)|B|$, where $\beta=e^{-(\log p)^{3 / 4}}$. Then, by Corollary 2.2 we obtain

$$
\left\|\widehat{1}_{B}\right\|_{1} \gg(\log p)^{1 / 8-o(1)} .
$$

Next let us assume that there exists $t \neq 0$ with $\left(1_{B} * 1_{-B}\right)(t) \geqslant(1-\beta)|B|$. We show that then there is $s \in B-B$ such that $\beta|B|<\left|B_{s}\right| \leqslant 3 \beta|B|$. Suppose to the contradiction. Let x be any element satisfying

$$
\left(1_{B} * 1_{-B}\right)(x) \geqslant 3 \beta|B|,
$$

so there are representations $x=a_{i}-b_{i}$, where $a_{i}, b_{i} \in B$ and $1 \leqslant i \leqslant\lceil 3 \beta|B|\rceil$. Notice that from $\left(1_{B} * 1_{-B}\right)(t) \geqslant(1-\beta)|B|$ it follows that among $a_{i}^{\prime} s$ there are at least

$$
\left(1_{B} * 1_{-B}\right)(x)-\beta|B| \geqslant 2 \beta|B|
$$

such that $a_{i}+t \in B$. Therefore, we infer that $\left(1_{B} * 1_{-B}\right)(x+t) \geqslant 2 \beta|B|$, but from our assumption it follows that

$$
\left(1_{B} * 1_{-B}\right)(x+t) \geqslant 3 \beta|B| .
$$

Since $\left(1_{B} * 1_{-B}\right)(0)=|B|$ we see that $B-B=\mathbb{Z} / p \mathbb{Z}$, which is a contradiction. If $\beta|B|<\left|B_{s}\right| \leqslant$ $3 \beta|B|$ then by Lemma 2.3 and (1) we have

$$
\left\|\widehat{1}_{B}\right\|_{1} \geqslant\left\|\widehat{1}_{B_{s}}\right\|_{1}^{1 / 2} \gg(\log p)^{1 / 8-o(1)} .
$$

To finish the proof it is enough to observe that $\widehat{1}_{A}(r)=\widehat{1}_{B}(r)+\widehat{1}_{A_{d}}(r)$, so that $\left|\hat{1}_{A}(r)\right| \geqslant$ $\left|\widehat{1}_{B}(r)\right|-\left|\widehat{1}_{A_{d}}(r)\right|$ and $\left\|\widehat{1}_{A}\right\|_{1} \geqslant\left\|\widehat{1}_{B}\right\|_{1}-\left\|\widehat{1}_{A_{d}}\right\|_{1}$. Again, by Lemma 2.3

$$
\left\|\widehat{1}_{A}\right\|_{1} \geqslant \max \left(\left\|\widehat{1}_{B}\right\|_{1}-\left\|\widehat{1}_{A_{d}}\right\|_{1},\left\|\widehat{1}_{A_{d}}\right\|_{1}^{1 / 2}\right) \gg(\log p)^{1 / 16-o(1)},
$$

which completes the proof.

References

[1] P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 1960, 191-212.
[2] E. Croot, I. Laba, O. Sisask, Arithmetic progressions in sumsets and L^{p}-almostperiodicity, Combin. Probab. Comput. 22 (2013), 351-365.
[3] H. Davenport, On a theorem of P. J. Cohen, Mathematika 7 (1960), 93-97.
[4] J. J. F. Fournier, On a theorem of Paley and the Littlwood conjecture, Arkiv för Mathematik 17 (1979), 199-216.
[5] B. J. Green, S. V. Konyagin, On the Littlewood problem modulo a prime, Canad. J. Math. 61 (2009), 141-164.
[6] G. H. Hardy, J. E. Littlewood, A new proof of a theorem on rearrangements, J. London Math. Soc. 23 (1948), 163-168.
[7] S. V. Konyagin, On a problem of Littlewood, Izvestiya of Russian Academy of Sciences, 45 (1981), 243-265.
[8] S. V. Konyagin, I. D. Shkredov, A quantitative version of Beurling Helson theorem, Functional Analysis and Its Applications, 49 (2015), 110-121.
[9] S. V. Konyagin, I. D. Shkredov, On Wiener norm of subsets of \mathbb{Z}_{p} of medium size, Journal of Mathematical Sciences, 218 (2016), 599-608.
[10] O. C. McGehee, L. Pigno, B. Smith, Hardy's inequality and the L^{1} norm of exponential sums, Annals of Math. 113 (1981), 613-618.
[11] S. K. Pichorides, On the L^{1} norm of exponential sums, Annales de l'institut Fourier 30 (1980), 79-89.
[12] T. Sanders, The Littlewood-Gowers problem, J. Anal. Math. 101 (2007), 123-162.
[13] T. TaO, V. Vu, Additive combinatorics, Cambridge University Press 2006.

Faculty of Mathematics and Computer Science, Adam Mickiewicz University,
Umultowska 87, 61-614 Poznań, Poland
schoen@amu.edu.pl

[^0]: *The author is supported by NCN GRant .
 2010 Mathematics Subject Classification: primary 11B75, secondary 11P99.

