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Abstract

We show that for every set A ⊆ Z/pZ we have ∥1̂A∥1 := 1
p

∑p−1
r=0 |

∑
a∈A e2πira/p| ≫

(log |A|)1/16−o(1).

1 Introduction

The following conjecture, known as the Littlewood conjecture, was posed in [6]: for every finite
set of integers A we have ∫ 1

0
|
∑
a∈A

e2πiax|dx ≫ log |A|.

This conjecture attracted attention of many mathematicians (see for example [1], [3], [4], [11])
and finally it was confirmed independently by McGehee, Pigno and Smith [10] and Konyagin
[7]. Green and Konyagin asked an analogues question in discrete case for subsets of Z/pZ: is it
true that

∥1̂A∥1 :=
1

p

p−1∑
r=0

|
∑
a∈A

e2πira/p| ≫ log |A|.

They proved [5] that

∥1̂A∥1 ≫ δ
( log p

log log p

)1/3
,

then this estimate was improved by Sanders [12]

∥1̂A∥1 ≫
( log p

(log log p)3

)1/2

for sets with positive density. Konyagin and Shkredov [8] solved the problem for sparse sets

with size |A| 6 e(log p)
1/3−o(1)

. Furthermore, Konyagin and Shkredov [8], [9] proved the following
results, which we will use later.
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Theorem 1.1 Let A be a subset of Z/pZ. If e(log p)1/3 6 |A| 6 p/3 then

∥1̂A∥1 ≫ (log(1/δ))1/3−o(1), (1)

if δ > (log p)−1/4(log log p)1/2 then

∥1̂A∥1 ≫ δ3/2(log p)1/2−o(1),

if δ < (log p)−1/4(log log p)1/2 then

∥1̂A∥1 ≫ δ1/2(log p)1/4−o(1),

The above results provides polylogarithmic lower bounds for sparse and very dense sets, however
they gives very poor estimates for sets with density

e−(log p)ε < δ < (log p)−1/2+ε.

Our aim is to prove the following theorem.

Theorem 1.2 Let A be a subset of Z/pZ. Then

∥1̂A∥1 ≫ (log |A|)1/16−o(1),

as |A| → ∞.

We will use the following notation. Let G be a finite abelian group. For a function f : G → C
we set

∥f∥Lq =
( 1

|G|
∑

|f(x)|q
)1/q

,

∥f∥ℓq = (
∑

|f(x)|q)1/q,

and if γ ∈ Ĝ ia a character of G then we define the Fourier coefficient by

f̂(γ) =
1

|G|
∑
x

f(x)γ(x).

The convolution of two functions f, g : G → C is defined by

(f ∗ g)(t) =
∑
x∈G

f(x)g(t− x),

for t ∈ G. Furthermore, we will write 1A for the indicator function of a set A and ∥1̂A∥1 for
∥1̂A∥ℓ1 .
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2 Auxiliary Lemmas

We apply a quasi-periodic lemma due to Croot, Laba and Sisask [2]. To formulate this result
we need some basic properties of Bohr sets contained in a finite abelian group G. For a set of
characters Γ ⊆ Ĝ and 0 < ε 6 1/2 we define

B(Γ, ε) = {x ∈ G : |γ(x)− 1| 6 ε for all γ ∈ Γ}.

The size of Γ is the rank of B and ε is its radius. Furthermore, for all ε and Γ we have B(Γ, ε) >
(ε/2π)|Γ||G|, see [13].

Lemma 2.1 Let q > 2 and 0 < ε < 1 be parameters. Let G be a finite abelian group and let
f : G → C. Then there exists a Bohr set B of rank ≪ q/ε2 and radius ≫ ε such that for each
t ∈ B

∥f(x+ t)− f(x)∥Lq 6 ε∥f̂∥1.

Corollary 2.2 Suppose that A is a subset of finite abelian group G, |A| = δ|G| and that
maxt ̸=0(1A ∗ 1−A)(t) < (1− β)|A| for some 0 < β 6 1. Then

∥1̂A∥1 ≫
( log |G|
log(1/βδ) log log |G|

)1/2
.

P r o o f. We apply Lemma 2.1 with f = 1A and ε, q to be determined later. Let B be a Bohr
set given by the lemma. Observe that for each t ∈ G

∥1A(x+ t)− 1A(x)∥qLq = 2|G|−1(|A| − (1A ∗ 1−A)(t)),

hence, for every t ∈ B

(1A ∗ 1−A)(t) > |A| − 1

2
εq∥1̂A∥q1|G|.

By our assumption (1A ∗1−A)(t) < (1−β)|A| for every t ̸= 0, so if t ∈ B \{0} then εq∥1̂A∥q1|G| >
β|A|, hence

∥1̂A∥1 > (βδ)1/qε−1.

Taking q = log(1/βδ) and ε = c
(

log |G|
q log log |G|

)−1/2
, we see that |B| > 1 and it gives the required

bound. �

Put Ad = A ∩ (A+ d). The next lemma provides a straightforward dependence between ∥1̂A∥1
and ∥1̂Ad

∥1, which is very important in our approach.

Lemma 2.3 Let A be a finite subset of Z/pZ. Then for every d ∈ A−A we have

∥1̂A∥1 > ∥1̂Ad
∥1/21
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P r o o f. We have

1̂Ad
(r) =

1

p

∑
x

1A(x)1A(x− d)e−2πirx/p,

and applying the Fourier inversion formula 1A(x) =
∑p−1

r=0 1̂A(r)e
2πirx/p we see that

1̂Ad
(r) =

∑
s

1̂A(s)1̂A(r − s)e2πid(r−s)/p,

hence
∥1̂Ad

∥1 6
∑
r

∑
s

|1̂A(s)||1̂A(r − s)| = ∥1̂A∥21

and the assertion follows. �

3 Proof of Theorem 1.2

In view of Theorem 1.1 we can restrict our attention to sets with density

e−(log p)1/4 < δ < (log p)−1/4.

By Cauchy-Davenport theorem (see [13]) we have

|A−A| > min(2|A| − 1, p) > 3

2
|A|,

provided that |A| > 2, so there exists d ∈ A−A such that

|Ad| = (1A ∗ 1−A)(d) 6
|A|2
3
2 |A|

=
2

3
|A|.

We put B = A \ Ad and observe that |B| > 1
3 |A| and d ̸∈ B − B. We consider two cases. First,

let us assume that maxt ̸=0(1B ∗ 1−B)(t) < (1− β)|B|, where β = e−(log p)3/4 . Then, by Corollary
2.2 we obtain

∥1̂B∥1 ≫ (log p)1/8−o(1).

Next let us assume that there exists t ̸= 0 with (1B ∗ 1−B)(t) > (1− β)|B|. We show that
then there is s ∈ B −B such that β|B| < |Bs| 6 3β|B|. Suppose to the contradiction. Let x be
any element satisfying

(1B ∗ 1−B)(x) > 3β|B|,

so there are representations x = ai − bi, where ai, bi ∈ B and 1 6 i 6 ⌈3β|B|⌉ . Notice that from
(1B ∗ 1−B)(t) > (1− β)|B| it follows that among a′is there are at least

(1B ∗ 1−B)(x)− β|B| > 2β|B|

such that ai+t ∈ B. Therefore, we infer that (1B ∗1−B)(x+t) > 2β|B|, but from our assumption
it follows that

(1B ∗ 1−B)(x+ t) > 3β|B|.
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Since (1B ∗ 1−B)(0) = |B| we see that B−B = Z/pZ, which is a contradiction. If β|B| < |Bs| 6
3β|B| then by Lemma 2.3 and (1) we have

∥1̂B∥1 > ∥1̂Bs∥
1/2
1 ≫ (log p)1/8−o(1).

To finish the proof it is enough to observe that 1̂A(r) = 1̂B(r) + 1̂Ad
(r), so that |1̂A(r)| >

|1̂B(r)| − |1̂Ad
(r)| and ∥1̂A∥1 > ∥1̂B∥1 − ∥1̂Ad

∥1. Again, by Lemma 2.3

∥1̂A∥1 > max(∥1̂B∥1 − ∥1̂Ad
∥1, ∥1̂Ad

∥1/21 ) ≫ (log p)1/16−o(1),

which completes the proof. �
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