Linear equations and sets of integers

By

Tomasz Schoen*

Abstract

We prove two results concerning solvability of a linear equation in sets of integers. In particular, it is showed that for every $k \in \mathbb{N}$, there is a noninvariant linear equation in k variables such that if $A \subseteq\{1, \ldots, N\}$ has no solution to the equation then $|A| \leq 2^{-c k /(\log k)^{2}} N$, for some absolute constant $c>0$, provided that N is large enough.

1. Introduction

Denote by $r(N)$ the maximum size of a subset of $\{1, \ldots, N\}$ having no nontrivial solution (see [4] for rigorous definition of nontrivial solution) to the equation

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{k} x_{k}=b \tag{1}
\end{equation*}
$$

and let $R(N)$ be the analogous maximum over sets without solution to (1) with distinct integers x_{i}. We say that an equation is invariant if $s=a_{1}+\cdots+a_{k}=0$ and $b=0$, otherwise it is called noninvariant. The invariant equation $x-y=0$ is called trivial. The condition $s=b=0$ strongly affects behavior of $r(N)$ and $R(N)$. It is known [2] that for a nontrivial invariant equation

$$
\begin{equation*}
r(N) \leqslant R(N)=o(N) \tag{2}
\end{equation*}
$$

and for noninvariant

$$
N \ll r(N) \leqslant R(N) .
$$

Ruzsa showed [3] that for invariant equations $r(N)$ and $R(N)$ can have different order of magnitude. However, he conjectured [4] that in noninvariant case we always have

$$
\begin{equation*}
R(N)=r(N)+o(N) . \tag{3}
\end{equation*}
$$

Our first result confirm this conjecture.
Theorem 1 For every noninariant equation we have $R(N)=r(N)+o(N)$.

[^0]The second result of this note was also motivated by a question stated in [4]. Define

$$
\lambda=\limsup \frac{r(N)}{N}
$$

In noninvariant case, Ruzsa proved a lower bound for λ, which depends only on the number of unknowns k, namely

$$
\lambda \geqslant(2 k)^{-k}
$$

We show that there are noninvariant equations, for which the above bound is not far from best possible.

Theorem 2 For every $k \geqslant 2$ there exists a noninvariant equation in k variables such that $\lambda<2^{-c k /(\log k)^{2}}$, for some absolute constant $c>0$.

2. Proof of Theorem 1

We will need the following lemma.

Lemma 3 Let $A \subseteq[N]$ and let

$$
\begin{equation*}
b x=a_{1} x_{1}+\cdots+a_{j} x_{j} \tag{4}
\end{equation*}
$$

be a nontrivial invariant equation. Suppose that for every $x \in A$ there are less than k disjoint solutions (i.e. $\left\{y_{1}, \ldots, y_{j}\right\} \cap\left\{y_{1}^{\prime}, \ldots, y_{j}^{\prime}\right\}=\emptyset$) to the equation (4) with distinct $y_{1}, \ldots, y_{j} \in A \backslash\{x\}$. Then $|A|=o(N)$.

Proof. Let B be a random subset of A, taking each $x \in A$ independently with probability $p=1 /(2 j k)$. For each $x \in A$ we fix \mathcal{S}_{x}, a maximal family of disjoint solutions to (4), so $\left|\mathcal{S}_{x}\right|<k$. Let C be the set of all $x \in B$ such that, if $\left(y_{1}, \ldots, y_{j}\right) \in \mathcal{S}_{x}$ then $\left\{y_{1}, \ldots, y_{j}\right\} \cap B=\emptyset$. By Bernoulii's inequality we have

$$
\mathbb{E}(|C|) \geqslant p|A|-p\left(1-(1-p)^{j}\right) k|A| \geq p|A|-p^{2} j k|A|=|A| /(4 j k)
$$

Thus, there is a subset C^{\prime} of A of size at least $|A| /(4 j k)$ such that for every $x \in C^{\prime}$ and $\left(y_{1}, \ldots, y_{j}\right) \in \mathcal{S}_{x}$ we have $\left\{y_{1}, \ldots, y_{j}\right\} \cap C^{\prime}=\emptyset$. We claim that C^{\prime} is free of solutions to (4) in distinct integers. Indeed, if $\left(x, y_{1}^{\prime}, \ldots, y_{j}^{\prime}\right)$ is a solution to (4) in C^{\prime}, then from the maximality of \mathcal{S}_{x} it follows that $\left\{y_{1}, \ldots, y_{j}\right\} \cap\left\{y_{1}^{\prime}, \ldots, y_{j}^{\prime}\right\} \neq \emptyset$ for some $\left(y_{1}, \ldots, y_{j}\right) \in \mathcal{S}_{x}$, which is a contradiction. Hence by (2), $\left|C^{\prime}\right|=o(N)$ and the assertion follows.

Proof of Theorem 1. Suppose that there is a noninvariant equation (1) such that (3) does not hold. Thus, there exists a positive constant c such that for infinitely many N we have

$$
R(N) \geqslant r(N)+c N
$$

Let $A \subseteq[N]$ be such that $|A|=R(N) \geqslant r(N)+c N$ and A does not contain any solution with distinct x_{i}.

Denote by A^{\prime} the set of all elements $x \in A$, for which every nontrivial invariant equation

$$
\left(a_{i_{1}}+\cdots+a_{i_{j}}\right) x=a_{i_{1}} y_{1}+\cdots+a_{i_{j}} y_{j}
$$

$1 \leq i_{1}<\cdots<i_{j} \leq k$, has at least k disjoint solutions with distinct $y_{1}, \ldots, y_{j} \in A$. By Lemma 3 we have

$$
\left|A^{\prime}\right|>r(N),
$$

provided that N is large enough, so that there is a solution to $a_{1} x_{1}+\cdots+a_{k} x_{k}=b$ in A^{\prime}. By $A^{\prime} \subseteq A$ some of x_{i} must be equal. We rearrange the equation in the following way (if necessary renumber the coefficients)

$$
\begin{equation*}
\left(a_{1}+\cdots+a_{i_{1}}\right) x_{1}+\cdots+\left(a_{i_{n-1}+1}+\cdots+a_{i_{n}}\right) x_{n}=b \tag{5}
\end{equation*}
$$

where $x_{i} \neq x_{j}$ for $i \neq j$. Possibly, there are expressions of the form $\left(a_{i_{j}}+a_{i_{j}+1}\right) x_{j}$ with $a_{i_{j}}=$ $-a_{i_{j}+1}$ (so they are equal zero). We join all them to another one, which is not of this form corresponding with, say x_{u}, by replacing all x_{j} by x_{u}. Since our equation is noninvariant it is always possible. Finally, we can assume that there are no expressions $\left(a_{i_{j}}+a_{i_{j}+1}\right) x_{j}, a_{i_{j}}=-a_{i_{j}+1}$ in (5). For each $1 \leqslant u \leqslant n$ the equation

$$
\begin{equation*}
\left(a_{i_{u-1}+1}+\cdots+a_{i_{u}}\right) x_{u}=a_{i_{u-1}+1} y_{i_{u-1}+1}+\cdots+a_{i_{u}} y_{i_{u}} \tag{6}
\end{equation*}
$$

has at least k disjoint solutions with distinct $y_{i_{u-1}+1}, \ldots, y_{i_{u}} \in A$. Thus, for every $1 \leqslant u \leqslant n$ we can select a solution $y_{i_{u-1}+1}, \ldots, y_{i_{u}}$ in such way that

$$
\left\{y_{i_{u-1}+1}, \ldots, y_{i_{u}}\right\} \cap\left\{y_{i_{v-1}+1}, \ldots, y_{i_{v}}\right\}=\emptyset
$$

for all $1 \leqslant u<v \leqslant n$. Finally, plugging (6) into (5) we obtain $a_{1} y_{1}+\cdots+a_{k} y_{k}=b$ with distinct integers $y_{i} \in A$, which is a contradiction.

3. Equations with small λ

Ruzsa [4] proved the following inequalities

$$
\lambda \geqslant \max \left\{q^{-1}, S^{-1},(2 k)^{-k}\right\}
$$

where q is the smallest positive integer that does not divide $\operatorname{gcd}(s, b)$ and $S=\sum\left|a_{i}\right|$. There are equations, which satisfy equality $\lambda=1 / q$ or $\lambda=1 / S$. It is easy to see that $\lambda=1 / q=1 / 2$ for the equation $x+y=z$ and $\lambda=1 / S=1 / 2$ for the equation $x-y=2$. We show that there are equations with λ close to the third bound. Our approach is partially based on the main idea of the proof of Theorem 1 in [5].

The Fourier coefficients of a set $A \subseteq \mathbb{Z}_{m}$ are defined by

$$
\widehat{A}(r)=\sum_{a \in A} e^{-2 \pi i r a / m},
$$

for every $r \in \mathbb{Z}_{m}$. Parseval's formula states that $\sum_{r=0}^{m-1}|\widehat{A}(r)|^{2}=|A| n$. For a set $T \subseteq \mathbb{Z}$, let $\mathrm{C}(T)$ be the smallest cardinality of a multiset $\Gamma \subseteq \mathbb{R}$ such that

$$
T \subseteq \operatorname{Span}(\Gamma)=\left\{\sum_{\gamma \in \Gamma} \varepsilon_{\gamma} \gamma: \varepsilon_{\gamma} \in\{-1,0,1\}\right\} .
$$

In proof of Theorem 2 we will make use of some lemmas. The first one is the well-known result of Chang [1].

Lemma 4 Let $A \subseteq \mathbb{Z}_{m},|A|=\delta m$ and $\Lambda=\left\{r \in \mathbb{Z}_{n}:|\widehat{A}(r)| \geqslant \varepsilon|A|\right\}$. Then there is a set $\Gamma \subseteq \mathbb{Z}_{m}$ such that $|\Gamma| \ll \varepsilon^{-2} \log (1 / \delta)$ and $\Lambda \subseteq \operatorname{Span}(\Gamma)$.

Lemma 5 For every positive integer t we have $C\left(\left\{1,2, \ldots, 2^{t}\right\}\right) \geqslant(t+1) / \log (2 t+3)$.
Proof. Suppose that $\Gamma \subseteq \mathbb{R},|\Gamma|=C\left(\left\{1,2, \ldots, 2^{t}\right\}\right)$ and $\left\{1,2, \ldots, 2^{t}\right\} \subseteq \operatorname{Span}(\Gamma)$. Since each integer $0 \leqslant n \leqslant 2^{t+1}-1$ can be written as $n=\sum_{i=0}^{t} \varepsilon_{i} 2^{i}, \varepsilon_{i} \in\{-1,0,1\}$ it follows that

$$
\begin{equation*}
n=\sum_{\gamma \in \Gamma} \varepsilon_{\gamma} \gamma \tag{7}
\end{equation*}
$$

for some $\varepsilon_{\gamma} \in\{0, \pm 1, \ldots, \pm(t+1)\}$. Thus, there are at least 2^{t+1} distinct sums of the form (7), so that

$$
(2 t+3)^{|\Gamma|} \geqslant 2^{t+1}
$$

hence

$$
\mathrm{C}\left(\left\{1,2, \ldots, 2^{t}\right\}\right) \geqslant \frac{t+1}{\log (2 t+3)}
$$

which completes the proof.
Denote by $d(A)$ the asymptotic density (if exists) of $A \subseteq \mathbb{N}$. The next lemma was proved in [4].
Lemma 6 If $s=0$ and $b \neq 0$, then

$$
\lambda=\sup d(A)
$$

where A runs over sets of positive integers in which (1) has no solution and $d(A)$ exists.

Proof of Theorem 2 . Let $c^{\prime}>0$ be a small constant to be specify later. First we consider the case of even $k \geq 6$, write $k=2 l+2$. Let $a_{i}=2^{i}$ for all $i \leqslant t=c^{\prime} k /(\log k)^{2}, a_{t+1}=\cdots=a_{l}=1$ and $b=\left(2^{t}\right)$!. We show that for the equation

$$
\begin{equation*}
a_{1}\left(x_{1}-y_{1}\right)+\cdots+a_{l}\left(x_{l}-y_{l}\right)+\left(x_{l+1}-y_{l+1}\right)=b \tag{8}
\end{equation*}
$$

we have $\lambda<2^{-c k /(\log k)^{2}}$. By Lemma 6 there exists a set $A \subseteq \mathbb{N}$ having no solution to (8) such that $d(A) \geqslant \lambda / 2>0$. Hence, by Szemerédi's theorem [6] there are arbitrarily long arithmetic progressions in A. Clearly, for a given $n \in \mathbb{N}$ there exists an arithmetic progression of length at least $2 \sum\left|a_{i}\right|+|b|+1$ and the step at least n in A. Let $d, d+m, \ldots, d+L m$ be such progression. Then $0, \pm m, \ldots, \pm L m \in A-A$ and notice that the congruence

$$
\begin{equation*}
a_{1}\left(x_{1}-y_{1}\right)+\cdots+a_{l}\left(x_{l}-y_{l}\right) \equiv b \quad(\bmod m) \tag{9}
\end{equation*}
$$

has no solution in $B=A \cap\{1, \ldots, m-1\}$. Indeed, if there is a solution $x_{i}, y_{i} \in B$ of (9), then

$$
a_{1}\left(x_{1}-y_{1}\right)+\cdots+a_{l}\left(x_{l}-y_{l}\right)=b+j m
$$

for some $|j| \leqslant 2 \sum\left|a_{i}\right|+|b|$. Thus, $j m \in A-A$, so that

$$
a_{1}\left(x_{1}-y_{1}\right)+\cdots+a_{l}\left(x_{l}-y_{l}\right)+\left(x_{l+1}-y_{l+1}\right)=b
$$

for some $x_{l+1}, y_{l+1} \in A$, which contradicts the choice of A. For m large enough we have $|B| \geqslant$ $(\lambda / 3) m$. Thus, to finish the proof it is enough to show that $|B|:=\delta m<2^{-c k /(\log k)^{2}} m$. Since B contains no solution to (9) it follows that

$$
\sum_{r=0}^{m-1} \prod_{i=1}^{l}\left|\widehat{B}\left(a_{i} r\right)\right|^{2} e^{2 \pi i r b / m}=0
$$

Therefore

$$
-|B|^{2 k}=\sum_{r=1}^{m-1} \prod_{i=1}^{l}\left|\widehat{B}\left(a_{i} r\right)\right|^{2} e^{2 \pi i r b / m} \geqslant-\sum_{\cos (2 \pi r b / m)<0} \prod_{i=1}^{l}\left|\widehat{B}\left(a_{i} r\right)\right|^{2} .
$$

An important property of $b=\left(2^{t}\right)$! is that if $\cos (2 \pi r b / m)<0$ then $\operatorname{gcd}(r, m)<m / a_{l}$. Let

$$
\prod_{i=1}^{l}\left|\widehat{B}\left(a_{i} r_{0}\right)\right|=\max _{\cos (2 \pi r b / m)<0} \prod_{i=1}^{l}\left|\widehat{B}\left(a_{i} r\right)\right|,
$$

then by Hölder's inequality

$$
|B|^{2 l} \leqslant \prod_{i=1}^{l}\left|\widehat{B}\left(a_{i} r_{0}\right)\right|^{\frac{2 l-2}{l}} \sum_{r=1}^{m-1} \prod_{i=1}^{l}\left|\widehat{B}\left(a_{i} r\right)\right|^{2 / l} \leqslant \prod_{i=1}^{l}\left|\widehat{B}\left(a_{i} r_{0}\right)\right|^{\frac{2 l-2}{l}} \prod_{i=1}^{l}\left(\sum_{r=1}^{m-1}\left|\widehat{B}\left(a_{i} r\right)\right|^{2}\right)^{1 / l} .
$$

By Parseval formula we have

$$
\sum_{r=1}^{m-1}\left|\widehat{B}\left(a_{i} r\right)\right|^{2} \leqslant a_{i} \sum_{r=0}^{m-1}|\widehat{B}(r)|^{2}=a_{i} m|B|
$$

so that

$$
\begin{equation*}
\prod_{i=1}^{l}\left|\widehat{B}\left(a_{i} r_{0}\right)\right| \geqslant \delta^{\frac{l}{2 l-2}}|B|^{l} \prod_{i} a_{i}^{-\frac{1}{2 l-2}} \geqslant \delta 2^{-t^{2} / l}|B|^{l} \tag{10}
\end{equation*}
$$

Let $\Lambda=\left\{a_{1} r_{0}, \ldots, a_{l} r_{0}\right\}$ and $\Lambda^{\prime}=\left\{a_{i} r_{0}:\left|\widehat{B}\left(a_{i} r_{0}\right)\right| \geqslant|B| / 2\right\}$, then from (10) it follows that $\left|\Lambda \backslash \Lambda^{\prime}\right| \leqslant \log (1 / \delta)+t^{2} / l$. By Lemma 4 there exists a set $Y \subseteq \mathbb{Z}_{m}$ such that $|Y| \ll \log (1 / \delta)$ and $\Lambda^{\prime} \subseteq \operatorname{Span}(Y)$. Thus, for $X=Y \cup\left(\Lambda \backslash \Lambda^{\prime}\right)$ we have $\Lambda \subseteq \operatorname{Span}(X)$ and $|X| \ll \log (1 / \delta)+t^{2} / l$.

Put $d=\operatorname{gcd}\left(r_{0}, m\right)$ and write $r_{0}=r_{1} d$. Furthermore, denote by $0 \leqslant s \leqslant m-1$ the integer such that $r_{1} s \equiv 1(\bmod m)$ and let $(a)_{m}$ stands for an integer $0 \leqslant h \leqslant m-1$ such that $h \equiv a$ $(\bmod m)$. As we mentioned before $a_{l} d<m$. We show that the span of

$$
\Gamma=\frac{1}{d} \cdot(s \cdot X)_{m} \cup \frac{1}{d} \cdot\left\{m, 2 m, \ldots, 2^{\lfloor\log |X|\rfloor} m\right\} \subseteq \mathbb{R}
$$

covers $\left\{a_{1}, \ldots, a_{l}\right\}$. Indeed, for every i there is a choice of $\varepsilon_{\gamma} \in\{-1,0,1\}$ such that

$$
\sum_{\gamma \in X} \varepsilon_{\gamma} \gamma \equiv a_{i} r_{0} \quad(\bmod m)
$$

hence

$$
\sum_{\gamma \in X} \varepsilon_{\gamma} s \gamma \equiv a_{i} d \quad(\bmod m) .
$$

Therefore, for every i, there is an integer n_{i} and a choice of $\varepsilon_{\gamma} \in\{-1,0,1\}$ satisfying

$$
\sum_{\gamma \in X} \varepsilon_{\gamma}(s \gamma)_{m}=a_{i} d+n_{i} m .
$$

Observe that

$$
\left|n_{i}\right| \leqslant \frac{1}{m}\left|\sum_{\gamma \in X} \varepsilon_{\gamma}(s \gamma)_{m}\right|+\frac{1}{m}\left|a_{i} d\right| \leqslant|X|(m-1) / m+1<|X|+1 .
$$

Thus, for some $\varepsilon_{j} \in\{-1,0,1\}$ we have

$$
a_{i}=\frac{1}{d} \sum_{\gamma \in X} \varepsilon_{\gamma}(s \gamma)_{m}-\frac{1}{d} n_{i} m=\sum_{\gamma \in X} \varepsilon_{\gamma} \frac{1}{d}(s \gamma)_{m}+\sum_{j=0}^{\lfloor\log |X|\rfloor} \varepsilon_{j} \frac{1}{d} 2^{j} m,
$$

so that $\left\{a_{1}, \ldots, a_{l}\right\} \subseteq \operatorname{Span}(\Gamma)$. However, by Lemma $5, \mathrm{C}\left(\left\{a_{1}, \ldots, a_{l}\right\}\right) \gg t / \log t$, so $|\Gamma|=$ $|X|+\lfloor\log |X|\rfloor+1 \gg t / \log t$. Hence

$$
\log (1 / \delta) \gg t / \log t-t^{2} / k \gg k /(\log k)^{2}
$$

provided that c^{\prime} is sufficiently small.
To finish the proof, we need to show the theorem for odd k, write $k=2 l+3 \geqslant 7$. In this case, it is easy to see that the required inequality is satisfied for the equation

$$
a_{1}\left(x_{1}-y_{1}\right)+\cdots+a_{l}\left(x_{l}-y_{l}\right)+(x+y-2 z)=b .
$$

References

[1] M.-C. Chang, Polynomial bounds in Freiman's theorem, Duke Math. J., 113 (2002), 399-419.
[2] K. F. Roth, On certain sets of integers, J. London Math. Soc., 28 (1953), 104-109.
[3] I. Z. Ruzsa, Solving linear equations in sets of integers. I, Acta Arith., 65 (1993), 259-282.
[4] I. Z. Ruzsa, Solving linear equations in sets of integers. II, Acta Arith., 72 (1995), 385-397.
[5] T. Schoen, Linear equations in \mathbb{Z}_{p}, Bull. London Math. Soc., 37 (2005), 495-501.
[6] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arth., 27 (1975), 199-245.

Faculty of Mathematics and Computer Science,
Adam Mickiewicz University,
Umultowska 87, 61-614 Poznań, Poland
schoen@amu.edu.pl

[^0]: *The author is supported by MNSW grant N N201 543538
 Keywords and phrases: linear equations, sets of integers.
 2010 Mathematics Subject Classification: primary 11B75, secondary 11P99.

