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Abstract

We prove two results concerning solvability of a linear equation in sets of integers. In
particular, it is showed that for every k ∈ N, there is a noninvariant linear equation in k vari-
ables such that if A ⊆ {1, . . . , N} has no solution to the equation then |A| ≤ 2−ck/(log k)2N,
for some absolute constant c > 0, provided that N is large enough.

1. Introduction

Denote by r(N) the maximum size of a subset of {1, . . . , N} having no nontrivial solution
(see [4] for rigorous definition of nontrivial solution) to the equation

a1x1 + · · ·+ akxk = b, (1)

and let R(N) be the analogous maximum over sets without solution to (1) with distinct integers
xi. We say that an equation is invariant if s = a1 + · · ·+ ak = 0 and b = 0, otherwise it is called
noninvariant. The invariant equation x−y = 0 is called trivial. The condition s = b = 0 strongly
affects behavior of r(N) and R(N). It is known [2] that for a nontrivial invariant equation

r(N) 6 R(N) = o(N) (2)

and for noninvariant
N ≪ r(N) 6 R(N).

Ruzsa showed [3] that for invariant equations r(N) and R(N) can have different order of mag-
nitude. However, he conjectured [4] that in noninvariant case we always have

R(N) = r(N) + o(N). (3)

Our first result confirm this conjecture.

Theorem 1 For every noninariant equation we have R(N) = r(N) + o(N).
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2 Linear equations

The second result of this note was also motivated by a question stated in [4]. Define

λ = lim sup
r(N)

N

In noninvariant case, Ruzsa proved a lower bound for λ, which depends only on the number of
unknowns k, namely

λ > (2k)−k.

We show that there are noninvariant equations, for which the above bound is not far from best
possible.

Theorem 2 For every k > 2 there exists a noninvariant equation in k variables such that
λ < 2−ck/(log k)2 , for some absolute constant c > 0.

2. Proof of Theorem 1

We will need the following lemma.

Lemma 3 Let A ⊆ [N ] and let

bx = a1x1 + · · ·+ ajxj (4)

be a nontrivial invariant equation. Suppose that for every x ∈ A there are less than k disjoint
solutions (i.e. {y1, . . . , yj}∩{y′1, . . . , y′j} = ∅) to the equation (4) with distinct y1, . . . , yj ∈ A\{x}.
Then |A| = o(N).

P r o o f. Let B be a random subset of A, taking each x ∈ A independently with probability
p = 1/(2jk). For each x ∈ A we fix Sx, a maximal family of disjoint solutions to (4), so |Sx| < k.
Let C be the set of all x ∈ B such that, if (y1, . . . , yj) ∈ Sx then {y1, . . . , yj} ∩ B = ∅. By
Bernoulii’s inequality we have

E(|C|) > p|A| − p(1− (1− p)j)k|A| ≥ p|A| − p2jk|A| = |A|/(4jk).

Thus, there is a subset C ′ of A of size at least |A|/(4jk) such that for every x ∈ C ′ and
(y1, . . . , yj) ∈ Sx we have {y1, . . . , yj} ∩ C ′ = ∅. We claim that C ′ is free of solutions to (4) in
distinct integers. Indeed, if (x, y′1, . . . , y

′
j) is a solution to (4) in C ′, then from the maximality of Sx

it follows that {y1, . . . , yj}∩{y′1, . . . , y′j} ̸= ∅ for some (y1, . . . , yj) ∈ Sx, which is a contradiction.
Hence by (2), |C ′| = o(N) and the assertion follows. 2

P r o o f o f T h e o r em 1. Suppose that there is a noninvariant equation (1) such that (3) does
not hold. Thus, there exists a positive constant c such that for infinitely many N we have

R(N) > r(N) + cN.

Let A ⊆ [N ] be such that |A| = R(N) > r(N) + cN and A does not contain any solution with
distinct xi.



T. Schoen 3

Denote by A′ the set of all elements x ∈ A, for which every nontrivial invariant equation

(ai1 + · · ·+ aij )x = ai1y1 + · · ·+ aijyj ,

1 ≤ i1 < · · · < ij ≤ k, has at least k disjoint solutions with distinct y1, . . . , yj ∈ A. By Lemma
3 we have

|A′| > r(N),

provided that N is large enough, so that there is a solution to a1x1 + · · ·+ akxk = b in A′. By
A′ ⊆ A some of xi must be equal. We rearrange the equation in the following way (if necessary
renumber the coefficients)

(a1 + · · ·+ ai1)x1 + · · ·+ (ain−1+1 + · · ·+ ain)xn = b, (5)

where xi ̸= xj for i ̸= j. Possibly, there are expressions of the form (aij + aij+1)xj with aij =
−aij+1 (so they are equal zero). We join all them to another one, which is not of this form
corresponding with, say xu, by replacing all xj by xu. Since our equation is noninvariant it is
always possible. Finally, we can assume that there are no expressions (aij+aij+1)xj , aij = −aij+1

in (5). For each 1 6 u 6 n the equation

(aiu−1+1 + · · ·+ aiu)xu = aiu−1+1yiu−1+1 + · · ·+ aiuyiu , (6)

has at least k disjoint solutions with distinct yiu−1+1, . . . , yiu ∈ A. Thus, for every 1 6 u 6 n we
can select a solution yiu−1+1, . . . , yiu in such way that

{yiu−1+1, . . . , yiu} ∩ {yiv−1+1, . . . , yiv} = ∅,

for all 1 6 u < v 6 n. Finally, plugging (6) into (5) we obtain a1y1+ · · ·+akyk = b with distinct
integers yi ∈ A, which is a contradiction. 2

3. Equations with small λ

Ruzsa [4] proved the following inequalities

λ > max{q−1, S−1, (2k)−k},

where q is the smallest positive integer that does not divide gcd(s, b) and S =
∑

|ai|. There are
equations, which satisfy equality λ = 1/q or λ = 1/S. It is easy to see that λ = 1/q = 1/2 for
the equation x+ y = z and λ = 1/S = 1/2 for the equation x− y = 2. We show that there are
equations with λ close to the third bound. Our approach is partially based on the main idea of
the proof of Theorem 1 in [5].

The Fourier coefficients of a set A ⊆ Zm are defined by

Â(r) =
∑
a∈A

e−2πira/m,

for every r ∈ Zm. Parseval’s formula states that
∑m−1

r=0 |Â(r)|2 = |A|n. For a set T ⊆ Z, let C(T )
be the smallest cardinality of a multiset Γ ⊆ R such that

T ⊆ Span(Γ) =
{∑

γ∈Γ
εγγ : εγ ∈ {−1, 0, 1}

}
.
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In proof of Theorem 2 we will make use of some lemmas. The first one is the well-known
result of Chang [1].

Lemma 4 Let A ⊆ Zm, |A| = δm and Λ = {r ∈ Zn : |Â(r)| > ε|A|}. Then there is a set
Γ ⊆ Zm such that |Γ| ≪ ε−2 log(1/δ) and Λ ⊆ Span(Γ).

Lemma 5 For every positive integer t we have C({1, 2, . . . , 2t}) > (t+ 1)/ log(2t+ 3).

P r o o f. Suppose that Γ ⊆ R, |Γ| = C({1, 2, . . . , 2t}) and {1, 2, . . . , 2t} ⊆ Span(Γ). Since each
integer 0 6 n 6 2t+1 − 1 can be written as n =

∑t
i=0 εi2

i, εi ∈ {−1, 0, 1} it follows that

n =
∑
γ∈Γ

εγγ, (7)

for some εγ ∈ {0,±1, . . . ,±(t+ 1)}. Thus, there are at least 2t+1 distinct sums of the form (7),
so that

(2t+ 3)|Γ| > 2t+1,

hence

C({1, 2, . . . , 2t}) > t+ 1

log(2t+ 3)
,

which completes the proof. 2

Denote by d(A) the asymptotic density (if exists) of A ⊆ N. The next lemma was proved in [4].

Lemma 6 If s = 0 and b ̸= 0, then
λ = sup d(A),

where A runs over sets of positive integers in which (1) has no solution and d(A) exists.

P r o o f o f Th e o r em 2. Let c′ > 0 be a small constant to be specify later. First we consider the
case of even k ≥ 6, write k = 2l + 2. Let ai = 2i for all i 6 t = c′k/(log k)2, at+1 = · · · = al = 1
and b = (2t)!. We show that for the equation

a1(x1 − y1) + · · ·+ al(xl − yl) + (xl+1 − yl+1) = b (8)

we have λ < 2−ck/(log k)2 . By Lemma 6 there exists a set A ⊆ N having no solution to (8) such
that d(A) > λ/2 > 0. Hence, by Szemerédi’s theorem [6] there are arbitrarily long arithmetic
progressions in A. Clearly, for a given n ∈ N there exists an arithmetic progression of length at
least 2

∑
|ai|+ |b|+1 and the step at least n in A. Let d, d+m, . . . , d+Lm be such progression.

Then 0,±m, . . . ,±Lm ∈ A−A and notice that the congruence

a1(x1 − y1) + · · ·+ al(xl − yl) ≡ b (mod m) (9)

has no solution in B = A ∩ {1, . . . ,m− 1}. Indeed, if there is a solution xi, yi ∈ B of (9), then

a1(x1 − y1) + · · ·+ al(xl − yl) = b+ jm
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for some |j| 6 2
∑

|ai|+ |b|. Thus, jm ∈ A−A, so that

a1(x1 − y1) + · · ·+ al(xl − yl) + (xl+1 − yl+1) = b

for some xl+1, yl+1 ∈ A, which contradicts the choice of A. For m large enough we have |B| >
(λ/3)m. Thus, to finish the proof it is enough to show that |B| := δm < 2−ck/(log k)2m. Since B
contains no solution to (9) it follows that

m−1∑
r=0

l∏
i=1

|B̂(air)|2e2πirb/m = 0.

Therefore

−|B|2k =

m−1∑
r=1

l∏
i=1

|B̂(air)|2e2πirb/m > −
∑

cos(2πrb/m)<0

l∏
i=1

|B̂(air)|2.

An important property of b = (2t)! is that if cos(2πrb/m) < 0 then gcd(r,m) < m/al. Let

l∏
i=1

|B̂(air0)| = max
cos(2πrb/m)<0

l∏
i=1

|B̂(air)|,

then by Hölder’s inequality

|B|2l 6
l∏

i=1

|B̂(air0)|
2l−2

l

m−1∑
r=1

l∏
i=1

|B̂(air)|2/l 6
l∏

i=1

|B̂(air0)|
2l−2

l

l∏
i=1

(m−1∑
r=1

|B̂(air)|2
)1/l

.

By Parseval formula we have

m−1∑
r=1

|B̂(air)|2 6 ai

m−1∑
r=0

|B̂(r)|2 = aim|B|

so that
l∏

i=1

|B̂(air0)| > δ
l

2l−2 |B|l
∏
i

a
− 1

2l−2

i > δ2−t2/l|B|l. (10)

Let Λ = {a1r0, . . . , alr0} and Λ′ = {air0 : |B̂(air0)| > |B|/2}, then from (10) it follows that
|Λ \Λ′| 6 log(1/δ) + t2/l. By Lemma 4 there exists a set Y ⊆ Zm such that |Y | ≪ log(1/δ) and
Λ′ ⊆ Span(Y ). Thus, for X = Y ∪ (Λ \ Λ′) we have Λ ⊆ Span(X) and |X| ≪ log(1/δ) + t2/l.

Put d = gcd(r0,m) and write r0 = r1d. Furthermore, denote by 0 6 s 6 m− 1 the integer
such that r1s ≡ 1 (mod m) and let (a)m stands for an integer 0 6 h 6 m − 1 such that h ≡ a
(mod m). As we mentioned before ald < m. We show that the span of

Γ =
1

d
· (s ·X)m ∪ 1

d
· {m, 2m, . . . , 2⌊log |X|⌋m} ⊆ R

covers {a1, . . . , al}. Indeed, for every i there is a choice of εγ ∈ {−1, 0, 1} such that∑
γ∈X

εγγ ≡ air0 (mod m),
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hence ∑
γ∈X

εγsγ ≡ aid (mod m).

Therefore, for every i, there is an integer ni and a choice of εγ ∈ {−1, 0, 1} satisfying∑
γ∈X

εγ(sγ)m = aid+ nim.

Observe that

|ni| 6
1

m

∣∣∣ ∑
γ∈X

εγ(sγ)m

∣∣∣+ 1

m
|aid| 6 |X|(m− 1)/m+ 1 < |X|+ 1.

Thus, for some εj ∈ {−1, 0, 1} we have

ai =
1

d

∑
γ∈X

εγ(sγ)m − 1

d
nim =

∑
γ∈X

εγ
1

d
(sγ)m +

⌊log |X|⌋∑
j=0

εj
1

d
2jm,

so that {a1, . . . , al} ⊆ Span(Γ). However, by Lemma 5, C({a1, . . . , al}) ≫ t/ log t, so |Γ| =
|X|+ ⌊log |X|⌋+ 1 ≫ t/ log t. Hence

log(1/δ) ≫ t/ log t− t2/k ≫ k/(log k)2,

provided that c′ is sufficiently small.
To finish the proof, we need to show the theorem for odd k, write k = 2l + 3 > 7. In this

case, it is easy to see that the required inequality is satisfied for the equation

a1(x1 − y1) + · · ·+ al(xl − yl) + (x+ y − 2z) = b. 2
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