Additive combinatorics

Winter semester 2016/2017

Series III

3.1. Construct a DCD-sets A such that $E(A) \gg|A|^{3}$.
3.2. Give an example of a convex set such that $\left(1_{A} \circ 1_{A}\right)(x) \gg|A|$
3.3. Show, that for $A \subseteq \mathbb{R}$ we have $|A A+A A| \gg|A|^{3 / 2-\varepsilon}$.
3.4. Suppose that $A \subseteq \mathbb{F}_{p}$ and $|A||B|>p$. Prove that $\frac{A-A}{(B-B) \backslash\{0\}}=\mathbb{F}_{p}$.
3.5.* Suppose that $A, B \subseteq \mathbb{F}_{p}$ and $|A||B|>100 p$. Prove that $\left|\frac{A-B}{(A-B) \backslash\{0\}}\right| \geqslant p / 3$.
3.6. Let $A, B \subseteq \mathbb{F}_{p}$ be sets with $|A||B|>100 p$. Show that

$$
|(A-B)(A-B)| \gg p^{3 / 4} .
$$

3.7. Let $k \in \mathbb{N}$ and let $A=\left\{a_{1}, \ldots, a_{n}\right\}_{<} \subseteq \mathbb{R}$ be a set such that for all sequences $\left(a_{i+k}-\right.$ $\left.a_{i}, \ldots, a_{i+1}-a_{i}\right)$ dla $i=1, \ldots, n-k$ are distinct. Prove that for each finite set of reals set B we have

$$
|A+B| \gg|A||B|^{1 /(k+1)} .
$$

