ADDITIVE COMBINATORICS Winter semester 2016/2017

SERIES II

2.1. Find (I * I), (I * I * I), $(I \circ I)$ and (I * J) where I = [N], J = [M].

2.2. Let A, B be subsets of a finite abelian group. Show that there exists $x \in G$ such, that $(A * B)(x) \ge \frac{|A||B|}{|G|}$.

2.3. Prove that

$$\mathsf{E}(A,B) = \sum_{a \in A, b \in B} |(b+A) \cap (a+B)|.$$

2.4. Show that for every $x \in A + B$

$$(A * B)(x) \le |(A - A) \cap (B - B)|.$$

In particular, $|A \pm B||(A - A) \cap (B - B)| \ge |A||B|$.

2.5. Put $P = \{x : (A * A)(x) \ge \varepsilon |A|\}$. Prove that $|P| \le \varepsilon^{-1}|A|$.

2.6. Suppose that $(A \circ A)(x) \ge (1-\varepsilon)|A|$ and $(A \circ A)(y) \ge (1-\delta)|A|$. Show that $(A \circ A)(x-y) \ge (1-\varepsilon-\delta)|A|$.

2.7. Let A be a finite subset of an abelian group and suppose for every $d \in A - A$ we have $(A \circ A)(d) > |A|/2$. Show that A - A is a subgroup of G.

2.8. Give an example of a set A such that $(A \circ A)(d) \ge |A|/2$, but A - A is not a subgroup.

2.9. Let $A_s = A \cap (A + s)$. Show that

 $((A - A) \circ (A - A))(s) \ge |A - A_s|$, and $((A + A) \circ (A + A))(s) \ge |A + A_s|$.

2.10. Prove that $E(A - A) \ge |A - A||A|^2$.

2.11.* Show that

$$\sum_{s} |A + A_s| \le |A + A|^2.$$

2.12.* Show that $\sum_{s,t} \mathsf{E}(A_s, A_t) = \sum_x (A \circ A)(x)^4$.

2.13. Suppose that $\sum_{s \in S} (A \circ B)(s) \ge \varepsilon |B| |S|$. Prove that

$$\varepsilon^2 |B| |S|^2 \leq \mathsf{E}(A, S) \leq \mathsf{E}(A)^{1/2} \mathsf{E}(S)^{1/2}.$$

2.14.* Let $\varepsilon > 0$ and assume that $|A + B| \le K|A|$. Show that there is a set X of size $O(K/\varepsilon)$ such that $|(X + A) \cap B| \ge (1 - \varepsilon)|B|$.

2.15. Let N be an odd number and let $A \subseteq [N]$ be a sum-free set of size $\frac{N+1}{2}$. Prove that A = [(N+1)/2, N] or $A = (2\mathbb{N}+1) \cap [N]$. Hint: Use 1.1.

2.16. What can you say on the size of a set $A \subseteq [N]$ such that:

- a) A A does not contain a power of 2,
- b) A + A does not contain a power of 2.