Additive combinatorics

Winter semester 2016/2017

SERIES II

2.1. Find $(I * I),(I * I * I),(I \circ I)$ and $(I * J)$ where $I=[N], J=[M]$.
2.2. Let A, B be subsets of a finite abelian group. Show that there exists $x \in G$ such, that $(A * B)(x) \geq \frac{|A||B|}{|G|}$.
2.3. Prove that

$$
\mathrm{E}(A, B)=\sum_{a \in A, b \in B}|(b+A) \cap(a+B)| .
$$

2.4. Show that for every $x \in A+B$

$$
(A * B)(x) \leq|(A-A) \cap(B-B)| .
$$

In particular, $|A \pm B||(A-A) \cap(B-B)| \geq|A||B|$.
2.5. Put $P=\{x:(A * A)(x) \geq \varepsilon|A|\}$. Prove that $|P| \leq \varepsilon^{-1}|A|$.
2.6. Suppose that $(A \circ A)(x) \geq(1-\varepsilon)|A|$ and $(A \circ A)(y) \geq(1-\delta)|A|$. Show that $(A \circ A)(x-y) \geq$ $(1-\varepsilon-\delta)|A|$.
2.7. Let A be a finite subset of an abelian group and suppose for every $d \in A-A$ we have $(A \circ A)(d)>|A| / 2$. Show that $A-A$ is a subgroup of G.
2.8. Give an example of a set A such that $(A \circ A)(d) \geq|A| / 2$, but $A-A$ is not a subgroup.
2.9. Let $A_{s}=A \cap(A+s)$. Show that

$$
((A-A) \circ(A-A))(s) \geq\left|A-A_{s}\right|, \quad \text { and } \quad((A+A) \circ(A+A))(s) \geq\left|A+A_{s}\right| .
$$

2.10. Prove that $\mathrm{E}(A-A) \geq|A-A||A|^{2}$.
2.11.* Show that

$$
\sum_{s}\left|A+A_{s}\right| \leq|A+A|^{2} .
$$

2.12.* Show that $\sum_{s, t} \mathrm{E}\left(A_{s}, A_{t}\right)=\sum_{x}(A \circ A)(x)^{4}$.
2.13. Suppose that $\sum_{s \in S}(A \circ B)(s) \geq \varepsilon|B||S|$. Prove that

$$
\varepsilon^{2}|B \| S|^{2} \leq \mathrm{E}(A, S) \leq \mathrm{E}(A)^{1 / 2} \mathrm{E}(S)^{1 / 2}
$$

2.14.* Let $\varepsilon>0$ and assume that $|A+B| \leq K|A|$. Show that there is a set X of size $O(K / \varepsilon)$ such that $|(X+A) \cap B| \geq(1-\varepsilon)|B|$.
2.15. Let N be an odd number and let $A \subseteq[N]$ be a sum-free set of size $\frac{N+1}{2}$. Prove that $A=[(N+1) / 2, N]$ or $A=(2 \mathbb{N}+1) \cap[N]$.
Hint: Use 1.1.
2.16. What can you say on the size of a set $A \subseteq[N]$ such that:
a) $A-A$ does not contain a power of 2 ,
b) $A+A$ does not contain a power of 2 .

