Additive combinatorics

Winter semester 2016/2017

Series IV

4.1. Show that for every integer n one has $\|\alpha n\|=\|-\alpha n\| \leqslant|n|\|\alpha\|$.
4.2. Let $\alpha \in \mathbb{R}$ and let $Q \in \mathbb{N}$. Show that there exist $p \in \mathbb{Z}, q \in \mathbb{N}$ such that $(p, q)=1, q \leqslant Q$ and $|\alpha-p / q| \leqslant(q Q)^{-1}$.

Hint: Apply the Pigeonhole Principle.
4.3. Suppose that $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ and $t \in \mathbb{N}$. Prove that there exist $q \in \mathbb{N}$ such that $q \leqslant t^{n}$ and $\left\|q \alpha_{i}\right\|<1 / t$.
Wskazówka: Apply the Pigeonhole Principle.
4.4. Let $t_{1}, \ldots, t_{k} \in \mathbb{N}$. Show that there exists $x \in \mathbb{R}$ such that $\left\|x t_{i}\right\| \geqslant 1 /(2 k)$, for each $1 \leqslant i \leqslant k$.
4.5.* Suppose that $\left\{1,2, \ldots, 2^{k}\right\} \subseteq \operatorname{Span}(A)=\left\{\sum_{a \in A} \varepsilon_{a} a: \varepsilon_{a}=0, \pm 1\right\}$. Show that $|A| \gg$ $k / \log k$.
4.6. Prove a lower bound for the size of a set A satisfying $\{1!, 2!, \ldots, k!\} \subseteq \operatorname{Span}(A)$.
4.7.* Show that if $A \subseteq \mathbb{Z}_{p}$ and $|A+A|<\frac{1}{100}(\log p)^{2}$, then there is $x \in \mathbb{Z}_{p}^{*}$ such that

$$
\|x a / p\| \leqslant 1 / 4, \quad \text { for each } a \in A .
$$

4.8. Let X be a k-element set, for a fix k. Provide bounds for the size of a set $A \subseteq[N]$ such that:
a) $(A-A) \cap X=\emptyset$,
b*) $(A+A) \cap X=\emptyset$.

