Additive combinatorics

Winter semester 2016/2017

Series VIII

8.1. Let $\Gamma \subseteq \mathbb{F}_{p}^{*}$ be a multiplicative subgroup. Show that

$$
\max _{r \neq 0}|\widehat{\Gamma}(r)| \leqslant \sqrt{p} .
$$

8.2. Does there exists a constant $\gamma>0$ independent on p such that $|\widehat{A}(r)|>\gamma$ for every $A \subseteq \mathbb{Z}_{p}$ and $r \in \mathbb{Z}_{p}$?
8.3. Let $A \subseteq \mathbb{Z}_{N},|A|=\delta N$. Prove that if $\mathrm{E}(A)=\delta|A|^{3}+\varepsilon N^{3}$, then $\max _{r \neq 0}|\widehat{A}| \leqslant \varepsilon^{1 / 4} N$.
8.4. Let $A, B \subseteq \mathbb{Z}_{N}$. Suppose that $|\widehat{A}(r)| \geqslant \alpha|A|$ and $|\widehat{B}(r)| \geqslant \beta|B|$ for every $r \in \Delta$. Prove that there exists $x \in \mathbb{Z}_{N}$ such that

$$
(A * B)(x) \geqslant\left(1+\alpha^{2} \beta^{2}|\Delta|\right) \frac{|A||B|}{N} .
$$

8.5. Let $A \subseteq[N]$ and put $A(r, q)=\{a \in A: a \equiv r(\bmod q)\}$. Suppose that for every $r \in[q]$ we have $|f(r / q)|=\left|\sum_{a \in A} e^{-2 \pi i r a / q}\right|>(1-\varepsilon)|A|$. Show that for some $r_{0} \in[q]$ we have $\left|A\left(r_{0}, q\right)\right|>$ $(1-2 \varepsilon)|A|$.
8.6. Let $f(\alpha)=\sum_{a \in A} e^{2 \pi i a \alpha}$, where $A \subseteq[N]$. Show that

$$
|f(\alpha)-f(\beta)|=O(N|A||\alpha-\beta|)
$$

