Additive combinatorics

Winter semester 2016/2017

Series VII

7.1. Let $A \subseteq \mathbb{Z}$ be a Sidon set. Show that there is no 3 -element set B such that $B+B \subseteq A$.
7.2.* Let $A \subseteq \mathbb{Z}$ be a finite Sidon set. Prove that for every finite set B one has

$$
|A+B| \geqslant \frac{|A|^{2}|B|}{|A|+|B|-1} .
$$

7.3. Let $A \subseteq \mathbb{Z}$ be a Sidon set such that $A-A=\mathbb{Z}_{N}$. Show that $|\widehat{A}(r)|=\sqrt{|A|-1}$ for every $r \neq 0$.
7.4. Let $A \subseteq \mathbb{Z}$ be a Sidon set $A \subseteq \mathbb{Z}_{N}$ such that $A-A=\mathbb{Z}_{N}$. Then $5 A=\mathbb{Z}_{N}$.
7.5. Let $A \subseteq \mathbb{Z}$ be a Sidon set $A \subseteq \mathbb{Z}_{N}$ such that $A-A=\mathbb{Z}_{N}$. Prove that if $(S+S) \cap A=$ $\emptyset, S \subseteq \mathbb{Z}_{N}$, then $|S|=O\left(N^{3 / 4}\right)$.

