Additive combinatorics

Winter semester 2016/2017

Series VI

6.1. Suppose that $A \subseteq[N]$ and $|A|>4 N^{2 / 3}$. Show that there exists $d \in A-A$ such that $d / 2, d / 3 \in A-A$.
6.2. Let $A \subseteq \mathbb{Z}_{p},|A|=\delta p$, where δ is a constant. Suppose that A shares an element with every arithmetic progression of length $c \delta p^{c \delta^{3}}$, where $c>0$ is a small constant. Prove that $A+A+A+A=\mathbb{Z}_{p}$.
6.3. Let $A \subseteq \mathbb{Z}_{p},|A|=\delta p$, where δ is a constant. Prove that there exists $x \in A+A+A$ such that

$$
0.9 \delta|A|^{2}<(A * A * A)(x)<1.1 \delta|A|^{2} .
$$

Hint: Use the method of Freiman-Halberstam-Ruzsa.
6.4.* Let $\delta, \varepsilon>0$ be constants and $A \subseteq \mathbb{Z}_{p}$. Suppose that each element from $A+A+A$ has at least $\varepsilon|A|^{2}$ representations in the form $a+a^{\prime}+a^{\prime \prime}$. Show that $A+A+A=\mathbb{Z}_{p}$.

