Additive combinatorics
Winter semester 2016/2017

Series V

5.1. Show that $\left|1-e^{2 \pi i \alpha}\right| \leqslant 2 \pi\|\alpha\|$.
5.2. Let $A, B \subseteq \mathbb{Z}_{N}$ and $(A+A) \cap B=\emptyset$. Prove that

$$
\max _{r \neq 0}|\widehat{B}(r)| \geqslant \frac{|A|}{N}|B| .
$$

5.3. Let $A \subseteq \mathbb{Z}_{N}$. Show that

$$
\max _{r \neq 0}|(\widehat{A-A})(r)| \geqslant \frac{N-|A-A|}{N-|A|}|A| .
$$

5.4. Show that if $\mathrm{E}(A) \geqslant|A|^{3} / K$, then $\mathrm{T}_{k}(A) \geqslant|A|^{2 k-1} / K^{k-1}$.
5.5. Suppose that $A \subseteq[0, N]$ and $A+A=[0,2 N]$. Prove a lower bound for the size of A.
5.6. Let $A \subseteq \mathbb{F}_{p},|A| t>100 p^{3 / 2}$. Show that $A \cdot A$ shares an element with every arithmetic progression with length t.
5.7.* Let $A \subseteq \mathbb{F}_{p},|A|>p^{3 / 4}$. Show that $3(A \cdot A)=\mathbb{F}_{p}$.

