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Abstract

We prove that if A ⊆ {1, . . . , N} does not contain any non-trivial three-term arithmetic
progression, then

|A| � (log logN)3+o(1)

logN
N .

1 Introduction

In this paper we prove the following bound in Roth’s theorem on arithmetic progressions.

Theorem 1 If A ⊆ {1, . . . , N} does not contain any non-trivial arithmetic progression of length
three then

|A| � (log logN)3(log log logN)4

logN
N .

The first non-trivial upper bound concerning the size of progression-free sets was given by
Roth [18] who showed the above inequality with N/ log logN . Then it was subsequently refined
by Heath-Brown [14] and Szemerédi [26] with a denominator of (logN)c for a positive constant
c, by Bourgain [6, 7] and Sanders [21] by proving that bound with c = 1/2−o(1), c = 2/3−o(1)
and c = 3/4− o(1). Sanders [22] showed a result close to the logarithmic barrier

|A| � (log logN)6

logN
N

and Bloom [4] further proved that

|A| � (log logN)4

logN
N ,

for set A ⊆ {1, . . . , N} avoiding three-term arithmetic progressions. Recently a slightly weaker
bound was obtained by a different argument by Bloom and Sisask [5]. Other results related to
Roth’s theorem can be found in [12], [15], [16], [24] and [25].
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2 Improved bound in Roth’s theorem

Let us also comment on the recent progress for the analogous problem in a high-dimensional
case. Croot, Lev and Pach [9] proved, by a polynomial method, an upper estimate (4− c)n with
some constant c > 0, for the size of progression-free sets in (Z/4Z)n. Later Ellenberg and Gijswijt
[11] obtained the bound (3− c)n with a positive constant c for subsets of Fn3 . The latter result
significantly improves the previous best bound of Bateman and Katz [1], however this the paper
[1] contains many deep results and valuable ideas that could potentially be also used in the
integer case.

Each of the mentioned papers contains significant novel ideas and methods, any of them
are used in our proof of Theorem 1. We employ the density increment argument obtained via
the Fourier analytical method invented by Roth [18]. We make use of the Bohr set machinery
introduced by Bourgain [6]. We focus on the structure of the large spectrum, explored first by
Bourgain [7] and thenceforth used in all further works. We also take advantage of deep insight
into the structure of the large spectrum done by Bateman and Katz in [1] and [2].

Finally, let us mention that as far as the lower bound on the maximal size of progression-
free subsets of {1, . . . , N} is concerned, the first non-trivial lower estimate N1−c(log logN)−1

was
established by Salem and Spencer [19]. Then Behrend [3] improved it to exp(−c

√
logN)N. Elkin

[10] refined slightly Behrend’s bound by a factor of (logN)1/2 and his argument was simplified
in [13].

2 Notation, Bohr sets and standard results

All sets considered in the paper are finite subsets of Z or Z/NZ. We write 1A(x) for the indicator
function of set A. Given functions f, g : Z/NZ→ C, the convolution of f and g is defined by

(f ∗ g)(x) =
∑

t∈Z/NZ

f(t)g(x− t).

The Fourier coefficients of a function f : Z/NZ→ C are defined by

f̂(r) =
∑

x∈Z/NZ

f(x)e−2πixr/N ,

where r ∈ Z/NZ, and the above applies to the indicator function of A ⊆ Z/NZ as well. Parseval’s
formula states in particular that

N−1∑
r=0

|1̂A(r)|2 = |A|N .

We also recall the fact that
̂(1A ∗ 1B)(r) = 1̂A(r)1̂B(r) .

For a real number θ > 0, the θ−spectrum of a set A is the set

∆θ(A) =
{
r ∈ Z/NZ : |1̂A(r)| > θ|A|

}
.

For a specified set A we often write ∆θ instead of ∆θ(A).
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For m ∈ N by E2m(A) we denote the number of 2m–tuples (a1, . . . , am, b1, . . . , bm) ∈ A2m

such that

a1 + · · ·+ am = b1 + · · ·+ bm.

For m = 2, we simply write E(A) for E4(A) and we call it the additive energy of set A.
We define the span of a finite set X by

Span (X) =
{∑
x∈X

εxx : εx ∈ {−1, 0, 1} for all x ∈ X
}
.

The dimension dim(A) of set A is the minimal size of set X such that A ⊆ Span (X). The
following theorem proven in [20] (see also [23] and [30]) provides an upper bound on the dimension
of a set in terms of its additive doubling K = |A+A|/|A|.

Theorem 2 [20] Suppose that |A+A| = K|A|. Then dim(A)� K log |A|.

We are going to use a sophisticated concept of Bohr sets-a fundamental tool introduced to
modern additive combinatorics by Bourgain [6].

Let G = Z/NZ be a cyclic group and let us denote the group of its characters by Ĝ w Z/NZ.
We define the Bohr set with a generating set Γ ⊆ Ĝ and a radius γ ∈ (0, 1

2 ] to be the set

B(Γ, γ) =
{
x ∈ Z/NZ : ‖tx/N‖ 6 γ for all t ∈ Γ

}
.

Here ‖·‖ denotes the distance to the integers, i.e. ‖x‖ = miny∈Z |x − y| for x ∈ R. Given η > 0
and a Bohr set B = B(Γ, γ), by Bη we mean the Bohr set B(Γ, ηγ). The two lemmas below are
pretty standard, hence we refer the reader to [31] for a complete account. The size of Γ is called
the rank of B and we denote it by rk(B).

Lemma 3 For every γ ∈ (0, 1
2 ] we have

γ|Γ|N 6 |B(Γ, γ)| 6 8|Γ|+1|B(Γ, γ/2)| .

Bohr sets do not always behave like convex bodies. The size of Bohr sets can vary sig-
nificantly even for small changes of the radius which was the motivation behind the following
definition.

We call a Bohr set B(Γ, γ) regular if for every η, with |η| 6 1/(100|Γ|) we have

(1− 100|Γ||η|)|B| 6 |B1+η| 6 (1 + 100|Γ||η|)|B|.

Bourgain [6] showed that regular Bohr sets are ubiquitous.

Lemma 4 For every Bohr set B(Γ, γ), there exists γ′ such that 1
2γ 6 γ′ 6 γ and B(Γ, γ′) is

regular.

The last lemma of this section presents a standard L2 density increment technique intro-
duced by Heath-Brown [14] and Szemerédi [26], see also [17]. A proof of the lemma below can
be found in either of the following papers [21], [22] and [4].
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Lemma 5 Let A ⊆ Z/NZ be a set with density δ. Let Γ ⊆ Z/NZ and ν > 0 be such that∑
r∈Γ\{0}

|1̂A(r)|2 > ν|A|2 .

Then there is a regular Bohr set B with rk(B) = dim(Γ) and radius Ω((dim(Γ))−1) such that

|(A+ t) ∩B| > (1 + Ω(ν))δ|B|

for some t.

Throughout the paper we assume that set A does not contain any non-trivial arithmetic
progression of length three and that N is a large number.

3 Sketch of the argument

We apply a widely used density increment argument introduced by Roth [18], however we use it
in a rather non-standard way. In the first step, we increase the density by a large factor of the
form (log(1/δ))1−o(1) on some low-rank Bohr set. Then we apply the iterative method of Bloom
to our new set with larger density to obtain the desired bound.

The general strategy can be roughly described as follows. Let A ⊆ [N ] be a set with density
δ without arithmetic progressions of length three then it is known that 1A must have large
Fourier coefficients. To obtain a density increment we would have to find a small set Λ such that
Span (Λ) has large intersection with the spectrum ∆δ. The size of Λ is equal to the rank of a
Bohr set, on which we will increase density, and density increment (given by the L2 method)
equals

(1 + Ω(δ2|Span (Λ) ∩∆δ|))δ.

If we want to obtain the density increment by factor Ω(L) for some function L → ∞, we have
to locate Λ of size O(δ−1+c), c > 0 such that

|Span (Λ) ∩∆δ| � Lδ−2 . (1)

The main problem is that by of Bateman-Katz structural result (see Theorem 10) there are sets
with spectrum such that the described set Λ does not exist. Hence one needs to combine the
above method with some new ideas.

In order to obtain the density increment we will consider three separate cases with respect
to the size of Fourier coefficients of 1A that in a sense dominate in ∆δ1+µ for a some small
constant µ > 0. If the contribution of middle size or small Fourier coefficients is large we follow
the method introduced by Bateman and Katz [1]. We consider essentially two subcases according
to the additive behavior of the large spectrum ∆. Following [1], we call the cases smoothing and
nonsmoothing, respectively. If the higher energy E8(∆) is much bigger than one can deduce
from the Hölder inequality applied to E(∆) (smoothing case), then based on the Bateman-Katz
argument we can indeed find a small set Λ satisfying (1). The nonsmoothing case is more delicate.
In that case we use a seminal result of Bateman and Katz [1, 2] that describes the structure of
the spectrum in the nonsmoothing case and it turns out that again we can also find a small set
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Λ satisfying (1), apart from one situation where roughly ∆ ≈ X + H , |∆| ∼ δ−3+O(µ) , |X| ∼
δ−2+O(µ) , |H| ∼ δ−1+O(µ) and H is a highly structured set. This case is considered separately
in Lemma 13 which is an important part of our argument. We show that either the density
can be increased on a Bohr set generated by H (such a Bohr set has a very low rank) or X
contains additive substructure which again leads to a density increment on a low-rank Bohr
set. The above argument does not apply when ∆δ1+µ is dominated by large Fourier coefficients.
Then assuming that there are very few smaller Fourier coefficients in ∆δ1+µ , using a different
technique based on Fourier approximation method, we prove that A does indeed have density
increment on a low-rank Bohr set.

4 Middle size Fourier coefficients

Assume that A ⊆ {1, . . . , N ′} does not contain any non-trivial arithmetic progressions of length
three. Let N be any prime number satisfying 2N ′ < N 6 4N ′. We embed A in Z/NZ in a
natural way and observe that A also does not contain any non-trivial arithmetic progression of
length 3 in Z/NZ. Let us recall a standard argument that shows that 1A must have large Fourier
coefficients. The number of three-term arithmetic progressions in A (including trivial ones) is
expressed by the sum 1

N

∑N−1
r=0 1̂A(r)21̂A(−2r), whence we have

1

N

N−1∑
r=0

1̂A(r)21̂A(−2r) = |A| .

Clearly, we can assume that |A| >
√

2N , so by the Hölder inequality∑
r 6=0

|1̂A(r)|3 > |A|3 −N |A| > 1

2
|A|3 .

Since ∑
r 6∈∆δ/4(A)

|1̂A(r)|3 6
1

4
δ|A|

N−1∑
r=0

|1̂A(r)|2 =
1

4
|A|3

it follows that ∑
r∈∆δ/4\{0}

|1̂A(r)|3 >
1

4
|A|3 ,

hence there are non-trivial Fourier coefficients with |1̂A(r)| � δ|A|.
However to obtain a large density increment we have to control Fourier coefficients below

typical treshold δ|A|. We will consider three separate cases:∑
r: δ1−µ|A|6|1̂A(r)|6δ1/10|A|

|1̂A(r)|3 >
1

10
δµ/5|A|3 , (2)

∑
r: δ1+µ|A|6|1̂A(r)|6δ1−µ|A|

|1̂A(r)|3 >
1

10
δµ/5|A|3 , (3)
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and the last one if (2) and (3) do not hold, where µ is a small positive constant. Throughout
the paper we assume that δµ/20 < log−1(1/δ) since we know that δ → 0 as N →∞.

By dyadic argument, we obtain∑
r: θ|A|6|1̂A(r)|62θ|A|

|1̂A(r)|3 >
1

10
δµ/5|A|3 log−1(1/δ) (4)

for some δ1−µ 6 θ 6 δ1/10, so

|∆θ| � θ−3δµ/5 log−1(1/δ) > θ−3δµ/4 . (5)

In this section we consider the first case (2). We will apply the Bateman-Katz-Bloom lemma,
see Lemma 5.3 in [1] and Theorem 4.1 in [4] (a slightly weaker version of Lemma 6 can be easily
deduced from Lemma 8).

Lemma 6 Let A ⊆ Z/NZ be a set with density δ, and let ∆ be a subset of ∆θ. Then there exists
a set ∆′ ⊆ ∆ such that |∆′| � θ|∆| and dim(∆′)� θ−1 log(1/δ).

Lemma 7 Let A ⊆ Z/NZ be a set with density δ, and suppose that (5) holds for some δ1−µ 6
θ 6 δ1/10. Then there is a regular Bohr set B with rk(B)� δ−1+µ/3 and radius Ω(δ1−µ/3) such
that for some t

|(A+ t) ∩B| � δ1−µ/4|B|.

P r o o f. By Lemma 6 there exists a set ∆1 ⊆ ∆θ such that |∆1| = Θ(θ|∆θ|) and

dim(∆1)� θ−1 log(1/δ) .

By iterative application of Lemma 6, we see that there are disjoint sets ∆1, . . . ,∆k ⊆ ∆θ, for
k = Θ(δ−µ/2) such that |∆i| = Θ(θ|∆θ|) and

dim(∆i)� θ−1 log(1/δ)

for every 1 6 i 6 k. Put Γ =
⋃k
i=1 ∆i ⊆ ∆θ then by (5) we have

|Γ| � δ−µ/2θ−2δµ/4 � δ−µ/4θ−2

and

dim(Γ)� δ−µ/2θ−1 log(1/δ)� δ−1+µ/2 log(1/δ)� δ−1+µ/3 .

Therefore, by Lemma 5 a shift of the set A has density at least

(1 + Ω(θ2|Γ|))δ � δ−1+µ/3

on a regular Bohr set with rank O(δ−1+µ/3) and radius Ω(δ1−µ/3). 2
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5 Additively smoothing spectrum

In sections 5 and 6 we obtain a density increment provided that (3) holds. Hence for some
δ1+µ 6 θ 6 δ1−µ we have ∑

r: θ|A|6|1̂A(r)|62θ|A|

|1̂A(r)|3 � |A|3 log−1(1/δ) .

Thus

|∆θ| > δµ/5θ−3 log−1(1/δ) > δ2µθ−2δ−1 , (6)

so the size of ∆θ is close to the maximal possible value.

A well-known theorem of Shkredov [28, 29] states that for every ∆ ⊆ ∆θ and m ∈ N we
have

E2m(∆) > θ2mδ|∆|2m.

Observe that by the Parseval formula |∆θ| 6 θ−2δ−1, so if we additionally assume that |∆θ| �
θ−2δ−1, then the Hölder inequality implies that for m > 3

E2m(∆θ) > E(∆θ)
m−1|∆θ|m−2 �m θ2mδ|∆θ|2m ,

which essentially meets Shkredov’s bound. This observation motivates the next definition intro-
duced by Bateman and Katz. We say that a spectrum ∆θ is σ-additively smoothing (or simply
additively smoothing if σ is indicated) if

E8(∆θ) > δ−σθ8δ |∆θ|8.

Otherwise, we say that the spectrum ∆θ is σ-additively nonsmoothing. In this section, we will
obtain a density increment for additively smoothing spectrum.

The following lemma, proven in [23] (see Corollary 7.5) is an abelian group version of
Bateman-Katz Lemma 5.3. The proof of this result requires some modifications, but similarly
as in Bloom’s Theorem 4.1 in [4] it relies on a probabilistic argument of Bateman and Katz.

Lemma 8 Let ∆ ⊆ Z/NZ be a set such that E2s(∆) = κ|∆|2s > 10ss2s|∆|s, where 2 6 s =
blog |∆|c. Then there exists a set Λ ⊆ ∆ such that |Λ| � κ−1/2s log3/2 |∆| and

|Span (Λ) ∩∆| � κ1/2s|∆| log−3/2 |∆| .

Lemma 9 Let A ⊆ Z/NZ, |A| = δN and suppose that for some δ1+µ 6 θ 6 δ1−µ we have
E8(∆θ) > δ−20µθ8δ |∆θ|8. Then there is a regular Bohr set B with rank rk(B) � δ−1+µ/2 and
radius Ω(δ1−µ/2) such that for some t

|(A+ t) ∩B| � δ1−µ/2|B|.
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P r o o f. Put s = blog |∆θ|c. Using the Hölder inequality and (5) we have

E2s(∆θ) > E8(∆θ)
s−1
3 |∆θ|−

s−4
3 > δO(1)δ

1
3

(1−20µ)sθ
8
3
s|∆θ|

7
3
s

> δ−
1
3

(18µ+o(1))sθ2s|∆θ|2s > δ−4µsθ2s|∆θ|2s ,

provided that N is large enough. Notice that (6) implies that E2s(∆θ)� 10ss2s|∆θ|s, so we can
apply Lemma 8. Thus, there exists a set Λ such that

|Λ| � δ2µθ−1 log3/2(1/δ)� δ−1+µ/2

and

|Span (Λ) ∩∆θ| � δ−2µθ log−3/2(1/δ)|∆θ| � δ−2µθ−2 log−5/2(1/δ)� δ−µ/2θ−2 .

Now it is enough to use Lemma 5 with Γ = Span (Λ) to get the required result. 2

6 Additively nonsmoothing spectrum

In this section, we will obtain a density increment in a more difficult case, when the spectrum
∆θ is an additively nonsmoothing set. Recall that for some δ1+µ 6 θ 6 δ1−µ we have

|∆θ| > δ2µθ−2δ−1 .

Bateman and Katz [1, 2] proved the following fundamental result characterizing the structure
of additively nonsmoothing sets.

Theorem 10 Let τ > 0 be a fixed number. There exists a function f = fτ : (0, 1) → (0,∞)
with f(x) → 0 as x → 0 such that the following holds. Let ∆ be a symmetric set of an abelian
group and let σ > 0. Assume that E(∆′) � |∆|2+τ for every ∆′ ⊆ ∆ with |∆′| � |∆| and that
E8(∆) 6 |∆|4+3τ+σ. Then there exists α, 0 6 α 6 1−τ

2 , such that for i = 1, . . . , d|∆|α−f(σ)e there
are sets Hi, Xi and ∆i ⊆ ∆ such that

|Hi| � |∆|τ+α+f(σ), (7)

|Xi| � |∆|1−τ−2α+f(σ), (8)

|Hi +Hi| � |Hi|1+f(σ), (9)

and

|(Xi +Hi) ∩∆i| � |∆|1−α−f(σ). (10)

Furthermore, the sets ∆i are pairwise disjoint.

We will apply Theorem 10 to the set ∆θ. By Shkredov’s theorem for every ∆ ⊆ ∆θ with
|∆| � |∆θ| we have

E(∆) > θ4δ|∆|4 � δ10µ/3θ2/3δ−2/3|∆|7/3 > δ4µ|∆|7/3 � |∆θ|7/3−2µ .
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On the other hand, by Lemma 9 we can assume that

E8(∆θ) 6 δ−20µθ8δ |∆θ|8 6 |∆θ|5+10µ .

Therefore we can apply Theorem 10 with

τ = 1/3− 2µ and σ = 16µ ,

hence our spectrum ∆θ has structure described in Theorem 10.

Throughout the paper assume that f(σ) > σ and that µ and f = f(16µ) are small constants.

Each of the four inequalities given in Theorem 10 is crucial in our approach. Note that from
(7), (8) and (10) we can deduce lower bounds for the size of Hi and Xi. In order to apply the
last one, we will need the following simple, elementary lemma.

Lemma 11 Let c, ε > 0 be such that |(X +H) ∩∆| > c|X||H|1−ε. Then there is a set X ′ ⊆ X
such that |X ′| > c

4 |X||H|
−ε and for every Y ⊆ X ′ we have |(Y +H) ∩∆| > c2

8 |Y ||H|
1−2ε.

P r o o f. Put S = (X +H) ∩∆ and notice that∑
t∈X+H

(1X ∗ 1H)(t) = |X||H| .

Let us denote by P the set of elements t with (1X ∗ 1H)(t) > 2
c |H|

ε. Clearly, |P | 6 c
2 |X||H|

1−ε

and therefore∑
t∈S\P

(1X ∗ 1H)(t) =
∑
x∈X
|(x+H) ∩ (S \ P )| > |S| − |P | > c

2
|X||H|1−ε .

Let X ′ be the set of all x ∈ X satisfying the inequality |(x+H) ∩ (S \ P )| > c
4 |H|

1−ε. Observe
that ∑

x∈X\X′
|(x+H) ∩ (S \ P )| 6 c

4
|H|1−ε|X \X ′| 6 c

4
|X||H|1−ε ,

hence

|X ′||H| >
∑
x∈X′

|(x+H) ∩ (S \ P )| > c

4
|X||H|1−ε .

Thus, |X ′| > c
4 |X||H|

−ε and if Y ⊆ X ′, then

|(Y +H) ∩∆| >
c
4 |Y ||H|

1−ε

2
c |H|ε

,

which yields to the required inequality. 2

The next lemma provides a density increment in a simpler case-in Bateman-Katz theorem
we have α > 20f.
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Lemma 12 Let A ⊆ Z/NZ, |A| = δN, and assume that for every ∆′ ⊆ ∆th with |∆′| � |∆th|
we have E(∆′)� |∆th|7/3−2µ and E8(∆th) 6 |∆th|5+10µ. Then either there is a regular Bohr set
B with rk(B)� δ−1+f and radius Ω(δ1−f ) such that

|(A+ t) ∩B| � δ1−f |B|

for some t; or there are sets H and X such that |H| � |∆θ|1/3+21f , |H +H| � |H|1+f , |X| �
|∆θ|2/3+2f , and

|(X +H) ∩∆θ| � |∆θ|1−21f .

P r o o f. By Theorem 10 applied with τ = 1/3− 2µ there exist 0 6 α 6 1/3 + µ and sets Hi, Xi

for 1 6 i 6 d|∆θ|α−fe such that

|∆θ|1/3−2µ+α−2f � |Hi| � |∆θ|1/3−2µ+α+f ,

and

|∆θ|2/3+2µ−2α−2f � |Xi| � |∆θ|2/3+2µ−2α+f ,

that fulfill inequalities (7)–(10). First, we assume that 1/3 − 20f 6 α 6 1/3 + µ and put
k = d|∆θ|α−25fe. Then by (10), (9) and Theorem 2 we have

∣∣ k⋃
i=1

(Xi +Hi) ∩∆θ

∣∣� |∆θ|α−25f |∆θ|1−α−f > |∆θ|1−f > θ−2δ−f ,

and

dim
( k⋃
i=1

(Xi +Hi)
)
�

k∑
i=1

|Xi|dim(Hi) 6 |∆θ|α−25f |Xi||Hi|f log |Hi|

� |∆θ|2/3+2µ−α−22f 6 |∆θ|1/3−f � δ−1+f .

Next let us assume that 20f 6 α 6 1/3− 20f . Observe that by (10) for every i we have

|(Xi +Hi) ∩∆i| � |∆θ|1−α−f � |Xi||Hi||∆θ|−3f � |Xi||Hi|1−5f . (11)

By Lemma 11 applied with Xi, Hi and ε = 5f there is X ′i ⊆ Xi such that

|X ′i| � |Xi||Hi|−5f � |∆θ|2/3+2µ−2α−5f > |∆θ|1/3−α+15f .

Let Yi ⊆ X ′i be any subset of size d|∆θ|1/3−α+15fe. By Lemma 11, we have

|(Yi +Hi) ∩∆i| � |∆θ|2/3−2µ+3f > |∆θ|2/3+f > θ−2δ−f .

Again Theorem 2 and (9) imply that

dim(Yi +Hi) 6 dim(Yi)dim(Hi)� |∆θ|1/3−α+15f |Hi|f log |Hi|
6 |∆θ|1/3−α+17f 6 |∆θ|1/3−f 6 δ−1+f .
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In both above considered cases we found a subset of ∆θ of size Ω(θ−2δ−f ) and dimension
O(δ−1+f ) hence by Lemma 5 there is a regular Bohr set B with rk(B) � δ−1+f and radius
Ω(δ1−f ) such that

|(A+ t) ∩B| > (1 + Ω(θ2θ−2δ−f ))δ|B| � δ1−f |B|

for some t.

Finally, if α 6 20f then for every i we have |Hi| � |∆θ|1/3−µ/3+α+f 6 |∆θ|1/3+21f , |Hi +
Hi| � |Hi|1+f , |Xi| � |∆θ|2/3+2µ/3−2α+f 6 |∆θ|2/3+2f and

|(Xi +Hi) ∩∆θ| � |∆θ|1−f ,

which completes the proof. 2

Finally, we arrived at a more difficult case, where ∆ ≈ X + H, |X| ∼ δ−2+O(µ), |H| ∼
δ−1+O(µ) and the set H is highly structured.

Lemma 13 Let A ⊆ Z/NZ, |A| = δN, and assume that there are sets H and X such that
|H| � |∆θ|1/3+21f , |H +H| � |H|1+f , |X| � |∆θ|2/3+2f , and

|(X +H) ∩∆θ| � |∆θ|1−21f .

Then there is a regular Bohr set B with rk(B) 6 δ−1+f and radius Ω(δ1−f ) such that

|(A+ t) ∩B| � δ1−f |B|

for some t.

P r o o f. Since dim(H) � δ−2f then there is a set Λ such that |Λ| � δ−2f and H ⊆ Span (Λ).
Let B = B(Λ, γ) be a regular Bohr set with radius 1/(6|Λ|) 6 γ 6 1/(3|Λ|) (the existence of
such γ is guaranteed by Lemma 4). Then clearly B ⊆ B(H, 1/3). Furthermore, for h ∈ H and
b ∈ B we have

‖hb/N‖ 6
∑
λ∈Λ

‖λb/N‖ 6 1/3,

so

|1̂B(h)| >
∑
b∈B
< e−2πihb/N >

1

2
|B| .

Put At = (A+ t) ∩B and let us assume that for each t we have

|At| � δ1−f |B| , (12)

as otherwise we would obtain the required density increment on a Bohr set with the rank O(δ−2f )
and radius Ω(δ2f ). For every x ∈ Z/NZ we have

1̂At(x) =
1

N

∑
h

1̂B(h)1̂A(x− h)e2πit(x−h)/N ,
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hence by the Parseval formula∑
t

|1̂At(x)|2 =
1

N

∑
h

|1̂B(h)1̂A(x+ h)|2 >
1

N

∑
h∈H
|1̂B(h)1̂A(x+ h)|2 . (13)

Let Y ⊆ X be a set given by Lemma 11 when applied to X,H and ε = 5f . Bounding similarly
as in (11) we have

|Y | � |X||H|−5f � |∆θ|2/3−O(f) .

Therefore, summing (13) over Y we get∑
t

∑
x∈Y
|1̂At(x)|2 >

1

N

∑
h∈H

∑
x∈Y
|1̂B(h)1̂A(x+ h)|2 � 1

N
|(Y +H) ∩∆θ||B|2δ2−2µ|A|2

� δ3|∆θ|1−O(f)|B|2|A| � δO(f)|B|2|A| .

Using averaging argument and (12) we see that there is a t such that∑
x∈Y
|1̂At(x)|2 � δ1+O(f)|B|2 � δ−1+O(f)|At|2 . (14)

We can ignore all small terms in (14) that satisfy

|1̂At(x)| 6 c
δ−1/2+O(f)

|X|1/2
|At| = δ1/2+O(f)|At| ,

where c > 0 is a sufficiently small constant, so by dyadic argument there is η � δ1/2+O(f) such
that ∑

x∈Y : η|At|6|1̂At (x)|62η|At|

|1̂At(x)|2 � δ−1+O(f) log−1(1/δ)|At|2 � δ−1+O(f)|At|2 .

Put
S =

{
x ∈ Y : η|At| 6 |1̂At(x)| 6 2η|At|

}
then by the above inequality it follows that

|S| � η−2δ−1+O(f) .

By Lemma 6 there is a set Z ⊆ S ⊆ Y such that |Z| > η|S| � η−1δ−1+O(f) and dim(Z) �
η−1 log(N/|At|). From (14) one can deduce that |At| � δ2|B| hence by Lemma 3 it follows that

|At| � δ2|B| > δ2γδ
−2f

N > (δ/8)2δ−2f
N ,

so
dim(Z)� η−1δ−3f � δ−1/2−O(f) .

Put η1 = η and let Z1 ⊆ Y be any set of size Θ(η−1
1 δ−1+O(f)) such that dim(Z) �

η−1
1 δ−3f � δ−1/2−O(f). Then we apply the above argument to the set Y \Z1 to find Z2 ⊆ Y \Z1

and η2 � δ1/2+O(f) with the same properties (observe that the whole argument can be applied
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for any set Y ′ ⊆ Y giving essentially the same conclusion, as long as |Y ′| � |Y |). Applying this
procedure k times we obtain disjoint sets Z1, . . . , Zk ⊆ Y such that |Zi| = Θ(η−1

i δ−1+O(f)) and
dim(Zi)� η−1

i δ−2f � δ1−O(f)|Zi| for some ηi � δ1/2+O(f), where k is the smallest integer such
that

|Z1|+ · · ·+ |Zk| > δ−3/2 .

Since for each i we have |Zi| 6 δ−3/2 it follows that

|Z1|+ · · ·+ |Zk| 6 2δ−3/2 .

Put U =
⋃k
i=1 Zi ⊆ X then |U | > δ−3/2 and

dim(U +H) 6 dim(H)

k∑
i=1

dim(Zi)� δ1−O(f)
k∑
i=1

|Zi| � δ−1/2−O(f) .

Again, by Lemma 11 we have

|U +H| � |U ||H|1−10f � δ−5/2+O(f) .

Lemma 5 implies that there exists a Bohr setB′ with rk(B′)� δ−1/2−O(f) and radius Ω(δ1/2+O(f))
such that

|(A+ t) ∩B′| � (1 + Ω(δ2+2µδ−5/2+O(f)))δ|B′| � δ1/2+O(f)|B′| � δ1−f |B′| (15)

for some t which is a contradiction. 2

7 Large Fourier coefficients

In this section we obtain the density increment if (2) and (3) do not hold, so there is a kind
of spectral gap in terms of L3-norm. We will use the well-known Chang’s Spectral Lemma [8],
which states that for every θ we have

dim(∆θ)� θ−2 log(1/δ) .

For any function f : ZN → R define

T (f) =
∑

x+y=2z

f(x)f(y)f(z) .

We also make use of the following lower bound on the number of 3-term arithmetic progressions
in a set S ⊆ Z/NZ with density γ proven by Bloom [4]

T (1A) > exp−O(γ−1 log4(1/γ))N2.

Lemma 14 Let A ⊆ Z/NZ, be a set with density δ such that (2) and (3) do not hold. Then
there is a regular Bohr set B with rk(B) 6 δ−2/5 and radius Ω(δ4) such that

|(A+ t) ∩B| � µ
log(1/δ)

log log4(1/δ)
δ|B|

for some t.
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P r o o f. By Chang’s lemma

dim(∆δ1/10)� δ−1/5 log(1/δ) 6 δ−2/5

hence there is a set Λ such that |Λ| � δ−2/5 and ∆δ1/10 ⊆ Span (Λ). Let B = B(Λ, γ) be a
regular Bohr set with radius γ � δ3. Let β = 1

|B|1B then for every r ∈ ∆δ1/10 we have

∣∣β̂(r)− 1
∣∣ 6 1

|B|
∑
b∈B
|e−2πiλb/N − 1| 6 2π

|B|
∑
b∈B

∑
λ∈Λ

‖rb/N‖ 6 2πδ2 , (16)

and similarly |β̂(2r)− 1| � δ2. Let f : ZN → [0, 1] be a function defined by

f(t) = β ∗ 1A(t) .

We may assume that f(t) = 1
|B| |(A− t) ∩B| 6 Lδ, where

L = cµ
log(1/δ)

log log4(1/δ)

and c > 0 is a small constant. Put

S =
{
t : f(t) > δ/2

}
then by

∑
t f(t) = |A| it follows that |S| > N/2L hence by Bloom’s Theorem we have

T (f) >
1

8
δ3T (1S)� δ3 exp(−O(L log4 L))N2 � δ3+µ/10N2 . (17)

Our next step is to compare T (f) and T (1A). By (16), (2), (3), Parseval’s formula and Hölder’s
inequality we have

∣∣T (1A)− T (f)
∣∣ =

1

N

∣∣N−1∑
r=0

1̂A(r)21̂A(−2r)−
N−1∑
r=0

f̂(r)2f̂(−2r)
∣∣

6
1

N

∑
r∈∆

δ1/10

|1̂A(r)21̂A(−2r)(1− β̂(r)2β̂(−2r))|+ 2

N

∑
r 6∈∆

δ1/10

|1̂A(r)|3

� δ2 1

N

∑
r∈∆

δ1/10

|1̂A(r)|3 +
2

N

∑
r∈∆δ1+µ\∆δ1/10

|1̂A(r)|3 +
2

N

∑
r 6∈∆δ1+µ

|1̂A(r)|3

� δ2|A|2 + δ1+µ/5|A|2 + δ1+µ|A|2 � δ3+µ/5N2 .

Thus, by (17)

T (1A)� δ3+µ/10N2 ,

which is a contradiction. 2
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8 Proof of Theorem 1

Summarizing all considered cases, we can state the following result.

Theorem 15 There exists an absolute constant c > 0 such that the following holds. Let A ⊆
Z/NZ be a set without any non-trivial arithmetic progressions of length three and let |A| = δN .
Then there is a regular Bohr set B with rk(B)� δ−1+c and radius Ω(δ4) such that for some t

|(A+ t) ∩B| � log(1/δ)

log log4(1/δ)
δ|B|.

P r o o f. Let us first make a suitable choice of parameters . Let µ > 0 be a constant the such
that for every σ 6 µ, (15) holds with f = f(16σ). Since we assumed that f(µ) > µ, we see
that in all considered cases in Lemma 7, Lemma 9, Lemma 12, Lemma 13 and Lemma 14 we
obtain density increment at least by factor of Ω(µ log(1/δ) log log−4(1/δ)) on a Bohr set with
rk(B)� δ−1+µ/3 and radius Ω(δ4). Thus, it is enough to take c = µ/3. 2

After the first step of our iterative procedure we obtain a larger density increment on a
low-rank Bohr set and then we apply less effective method of Bloom (Theorem 7.1 [4]).

Lemma 16 [4] There exists an absolute constant c1 > 0 such that the following holds. Let
B ⊆ Z/NZ be a regular Bohr set of rank d. Let A1 ⊆ B and A2 ⊆ Bε, each with relative
densities αi. Let α = min(c1, α1, α2) and assume that d 6 exp(c1(log2(1/α)). Suppose that Bε
is also regular and c1α/(4d) 6 ε 6 c1α/d. Then either

(i) there is a regular Bohr set B′ of rank rk(B′) 6 d+O(α−1 log(1/α)) and size

|B′| > exp
(
−O(log2(1/α)(d+ α−1 log(1/α)))

)
|B|

such that

|(A1 + t) ∩B′| � (1 + c1)α1|B′|

for some t ∈ Z/NZ;

(ii) or there are Ω(α2
1α2|B||Bε|) three-term arithmetic progressions x + y = 2z with x, y ∈

A1, z ∈ A2;

Now we are in position to finish the proof of our main result. We will not give detailed
proof of the iteration procedure as it is very standard and the reader can find details on it in the
literature (see [4], [21]). In the first step we apply Theorem 15 to obtain a regular Bohr set B0

with rk(B0)� δ−1+c, radius Ω(δ4) and a progression-free set A0 ⊆ A+ t for some t such that

|A0 ∩B0| � α|B0| ,

where

α� log(1/δ)

log log4(1/δ)
δ .
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By Lemma 3 we have

|B0| > exp
(
−O(δ−1+c log(1/δ))

)
N .

Next we iteratively apply Lemma 16 and let Bi be Bohr sets obtained in the iterative procedure.
Observe that after k � log(1/α) steps we will be in the case (ii) of Lemma 16 and that
rk(Bi)� α−1 log2(1/α) for every i 6 k. Thus, there are

Ω(α3|Bk||Bk
ε |)

three-term arithmetic progressions in A, where ε > c1α/(4rk(Bk))� α2 log2(1/α).

By Lemma 16 and Lemma 3 we have

|Bk| > exp
(
−O(α−1 log4(1/α))

)
N > exp

(
−O(δ−1 log3(1/δ)) log log4(1/δ)

)
N ,

and

|Bk
ε | > exp

(
−O(α−1 log3(1/α))

)
exp

(
−O(α−1 log4(1/α))

)
N

> exp
(
−O(δ−1 log3(1/δ) log log4(1/δ))

)
N .

Therefore A contains

Ω(α3 exp
(
−O(δ−1 log3(1/δ) log log4(1/δ))

)
N2)

arithmetic progressions of length three. Since there are only |A| trivial progressions it follows
that

|A| � α3 exp
(
−O(δ−1 log3(1/δ) log log4(1/δ))

)
N2 ,

which completes the proof of Theorem 1.

9 Concluding remarks

In Lemma 7, Lemma 9, Lemma 12 and Lemma 13 we obtained a density increment by factor of
δ−c on a low-rank Bohr set, where c is a positive constant. Such density increment even in the
first step of an iterative method would lead to the upper bound O((logN)−1−c) in Theorem 1.
However, in Lemma 14 we only were able to prove an increment by factor (log(1/δ))1−o(1). Any
refinement of Lemma 14 will directly imply an improvement of Theorem 1.
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