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Abstract

A classical result of Rado states that for every homogenous regular equation with integer
coefficients there is the least natural number R(n) such that if the elements of [N ] = {1, . . . , n}
are colored into n colors for N > R(n), then there is a monochromatic solution to the
equation. While density results provide quite accurate bounds for R(n) in case of invariant
equations, the general upper bounds known have been tower-like in nature. In this paper we
prove that R(n) = exp(O(n4 log4 n)) for all homogenous regular equations.

Also, we prove that the Schur-like numbers for the equation x1 + x2 + x3 = y1 + y2 are

at most O(n−c log n
log log nn!), for some absolute constant c > 0. This beats a bound following

classical Schur’s argument. In the last section we establish a new upper bound for the van
der Waerden numbers W(3, k).

1 Introduction

It has been a long studied question of when a diophantine equation has a solution in a set of
integers and it has been known for long that not all equations are created equal to this respect.
The main division line goes between those which can be called invariant and those which cannot.
A great account of this is two-part Ruzsa’s work [16, 17].

Definition 1.1. Given a linear equation of integer coefficients

a1x1 + · · ·+ akxk = b , (1.1)

for ai ∈ Z and b ∈ Z, we say that:

1. it is homogenous if b = 0;

2. it is invariant if b =
∑k

i=1 ai = 0;
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3. it contains an equation of genus g if there are g pairwise disjoint non-empty subsets
I1, . . . , Ig ⊆ {1, . . . , k} such that

∑
i∈Ij ai = 0 for every j = 1, . . . , g.

Note that equations that have genus g in accordance with Ruzsa’s [16, Definition 3.5], do
also contain an equation of genus g in the sense of the definition above.

While existence of solutions to invariant equations can be guaranteed on density basis
alone, it is no longer so for general non-invariant equations. A natural example is the set of odd
numbers, which is free of solutions to Schur’s equation x+y = z despite of having density 1

2 . For
this reason a study of non-invariant equations has to follow slightly different lines, designated
long ago by Schur [22] and Rado [15].

Definition 1.2. We say that equation (1.1) is regular if in every finite coloring N = A1∪· · ·∪An
there exists a monochromatic solution to it.

Rado proved [15] that a homogenous equation is regular if and only if it contains an equation
of genus 1. Thus, in a sense, a homogenous regular equation must contain an invariant equation.
In this case it follows by the compactness principle that there is the smallest integer R(n) such
that for every n-coloring of {1, . . . ,R(n)} there is a monochromatic solution to (1.1).

Since known proofs of Rado’s theorem rely on finding long monochromatic arithmetic pro-
gressions or similar arithmetic structures, the resulting upper bounds are rather poor. A straight-
forward application of the van der Waerden theorem would result in an Ackerman-type bound
for the Rado numbers and application of the powerful result of Gowers [11, Theorem 18.2] cannot
give anything better than roughly

R(n) 6 tower(5n) ,

where

tower(n) = 22.
. .2
}
n times.

As already mentioned, if (1.1) is invariant, then density results are highly related to Rado
numbers. It follows from Behrend’s construction [2] composed with a probabilistic covering
argument on the one hand, and from Bloom’s [3, Theorem 1.1] based on Sanders’s work [20] on
the other, that for every k-variable invariant equation we have

2O(log2 n) 6 R(n) 6 2O(n1/(k−2) log5 n) .

If, additionally, we assume that k > 6 then from [21, Theorem 1.1] one can deduce that

R(n) 6 2O(log7 n) .

Notice that Behrend’s construction still provides the bound R(n) � 2O(log2 n) for every convex
equation

a1x1 + · · ·+ akxk = (a1 + · · ·+ ak)y ,

a1, . . . , ak ∈ N. Hence for all convex equations with k > 6 we have quite tight bounds on Rado
numbers. Furthermore, for equations with genus g > 2 we have

R(n) = n1+O(1/g) ,
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see Ruzsa’s [16, Theorem 3.6].
On the other hand, if (1.1) is non-invariant, then every set of integers contains a subset

proportional in size and free of solutions to this equation. Hence, by iterative argument,

R(n)� Cn

for some C > 1 depending on the equation.

The above discussion shows that one of the most widely open questions concerning Rado
numbers is that of upper bounds for non-invariant equations. The paper is devoted to these
equations only and our main results are the following three theorems proved in Section 2. Many
of the proofs presented share the same idea of identifying long monochromatic arithmetic pro-
gressions or, in the more involved cases, large Bohr sets. The following results are presented in
the order of increasing strength of hypothesis. The more structural the equation considered, the
more efficient our methods will be. All implied constants depend only on the equation considered.

Theorem 1.3. Let a1x1 + · · ·+akxk = 0 be any regular equation with integer coefficients. Then
for every n

R(n)� 2O(n4 log4 n).

Theorem 1.4. Let a1x1 + . . .+ akxk = 0 be an equation with integer coefficients that contains
an invariant equation with at least 4 variables. Then for every n

R(n) 6 2O(n3 log5 n) .

Theorem 1.5. Let a1x1 + . . .+ akxk = 0 be an equation with integer coefficients that contains
an equation of genus 2, then

R(n) 6 2O(n2 log5 n) .

While the above results make a significant progress when compared with tower-like bounds,
the gap between lower and upper bounds is still wide. We will keep this issue in mind in Section
3 when a particularly simple class of Schur-like equations will be considered.

A classical theorem of Schur [22], prior to general Rado’s result [15], asserts that for every
partitioning of the first ben!c positive integers into n classes one can always find three numbers
in one partition class satisfying the equation x + y = z. In other words, a certain class is not
sum-free.

Denote by S(n) the smallest integer N such that for every n-coloring of {1, . . . , N} there is
a monochromatic solution to x+ y = z. We know that

321n/5 � S(n) 6 b(e− 1/24)n!c .

For the lower bound see [8]. The upper one stems from the relation S(n) < R(3, . . . , 3; 2) between
Schur and Ramsey numbers, from the classical recurrence relation

R(k1, . . . , kn; 2) 6 2− n+
n∑
i=1

R(. . . , ki−1, ki − 1, ki+1, . . . ; 2)
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and the bound R(3, 3, 3, 3; 2) 6 65 proved in [24]. Abbott and Moser [1] proved that limn→∞ S(n)1/n,
although not necessarily finite, does exist. Proving any significantly stronger bound on S(n)
would be highly appreciated but we will only manage to improve it a little bit in a special case
only.

We call a set A ⊆ Z k-sum-free if it contains no solution to the equation

x1 + · · ·+ xk+1 = y1 + · · ·+ yk . (1.2)

Also we denote by Sk(n) the analogues of the Schur numbers for equation (1.2). Because every
(k + 1)-sum-free set is also k-sum-free, we have

S(n) = S1(n) > S2(n) > . . . .

It is easy to check that for every k we still have Sk(n) > Cnk , for some constant Ck > 1.
While such equation is easier to handle for larger k, because of the large number of summands
involved, a straightforward application of Schur’s argument only gives Sk(n)� 1

kn!. Our result
is the following.

Theorem 1.6. For some absolute positive constant c, we have

S2(n)� n
−c logn

log lognn! .

Finally, in Section 4, we shall improve a bound for van der Waerden numbers W(3, k).
The sections that are about to follow can be read independently.

Notation

All sets considered in the paper are finite subsets of Z or Z/NZ. For sets A,B we write

A+B = {a+ b : a ∈ A, b ∈ B},

and a·A = {ax : x ∈ A}. On the other hand, iterated sumsets are defined as mA =

m︷ ︸︸ ︷
A+ . . .+A,

and we shall consistently distinguish between these two notations.
We denote by µX the uniform measure on a nonempty set X and we write A(x) for the

indicator function of the set A. For f, g : Z/NZ→ C the convolution of f and g is defined by

(f ∗ g)(x) =
∑

t∈Z/NZ

f(t)g(x− t).

The Fourier coefficients of a function f : Z/NZ→ C are defined by

f̂(r) =
∑

x∈Z/NZ

f(x)e−2πixr/N ,

where r ∈ Z/NZ, and the above applies to the indicator function of a set A ⊆ Z/NZ, which we
will write A, as well. We set

Spec η(A) = {r ∈ Z/NZ : |Â(r)| > η|A|}.

Parseval’s formula states that
∑N−1

r=0 |Â(s)|2 = |A|N . We will also use the fact that ̂(A ∗B)(r) =

Â(r)B̂(r).

4



2 Rado numbers

This section consists of two parts. In the first one we describe the main ideas of our approach
to upper bounds for Rado numbers and compare it with a traditional one, based on identifying
long monochromatic arithmetic progressions in structured sets. Since sumsets, nor even sets of
the form 2A− 2A do not have to contain sufficiently long progressions, the results obtained will
be rather poor, but still much better than previous bounds. In the second part we will prove the
main results of this paper. To this end we will heavily rely on properties of Bohr sets.

2.1 Sketch of the argument

To prove our results we try to adopt classical Schur’s method, which is originally designed to
prove upper bounds on partitions free of solutions to the equation x+y = z and can be described
as follows. Suppose that X0 = [N ] = A1 ∪ · · · ∪ An is a sum-free partition. Then, iteratively,
for Xk−1 ⊆ Ak ∪ . . . ∪ An and Xk−1 −Xk−1 disjoint with A1 ∪ . . . ∪ Ak−1 we may assume that
Xk−1 ∩ Ak is the largest among Xk−1 ∩ Ak, . . . , Xk−1 ∩ An. Let a = maxXk−1 ∩ Ak. Clearly
Xk = a− (Xk−1 ∩Ak \ {a}) satisfies the conditions imposed. Iterating this process, after n steps
we find a set Xn of size roughlyN/nn such that (Xn −Xn)∩ [N ] = ∅. This results in the bound
N � nn.

Now, notice that it is enough in the general case to consider equations of the form

ax− ay + bz = 0

with a, b positive integers, because by Rado’s theorem every regular equation can be reduced
to such an equation. It is immediate that Schur’s argument cannot be directly applied for the
above equations. To make it work one can try to locate in a·A1 − a·A1 a symmetric arithmetic
progression disjoint with b·A1, and iterate this procedure. To express this idea we recall the
following lemma.

Lemma 2.1 ([7, Corollary 1]). Let A ⊆ {1, . . . , N} with |A| > δN. Then there exist integers
d > 0 and l� logN

log(1/δ) such that d, 2d, . . . , ld ∈ A−A.

Theorem 2.2. For any regular homogenous equation a1x1 + . . .+ akxk = 0 with integer coeffi-
cients we have

R(n) 6 tower((1 + o(1))n) ,

where the o(1) term depends only on the equation.

Proof. Let [R(n) − 1] = A1 ∪ · · · ∪ An be a partition without a monochromatic solution to our
equation and set N = R(n) − 1. Also, following Rado’s characterization of regular equations,
let I be such that

∑
i∈I ai = 0. First, observe that there are no monochromatic solutions to the

equation

ax− ay + bz = 0 ,

where a = |ai0 | for some i0 ∈ I and b = |
∑

i 6∈I ai|. Suppose that |A1 ∩ {1, . . . , N/a}| > N/na
and let A ⊆ A1 be any set of elements of A1 belonging to the same residue class modulo b with
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|A| > |A1|/b. We apply Lemma 2.1 to A, so that d, 2d, . . . , ld ∈ A − A for some l � logN
log(abn) .

Notice that d ≡ 0 (mod b) and ad/b, 2ad/b, . . . , lad/b 6∈ A1, so that

ad/b, 2ad/b, . . . , lad/b ∈ A2 ∪ · · · ∪An .

Whence R(n− 1)� logN
log(abn) or, equivalently,

R(n) 6 (abn)O(R(n−1))

and the assertion follows. �

Next we show that Theorem 2.2 can be highly improved provided that the equation con-
sidered contains an invariant component of at least three variables, i.e. there exists I such that∑

i∈I ai = 0 and |I| > 3. To this end we need some lemmas. The first one is a deep result due
to Sanders, proved in [20, Theorem 1.1], see also [3]. The other can be easily extracted from the
proof of [9, Theorem 3].

Lemma 2.3. Let A ⊆ {1, . . . , N} with |A| > δN. Then A contains exp(−O((1/δ) log5(1/δ))|A|k−1

solutions to any invariant equation with k > 3 variables.

Lemma 2.4. Let A,B,C ⊆ {1, . . . , N} with |A|, |B|, |C| > δN. Then every x with at least
ε|A||B||C|/N representations in A + B + C is a middle term of an arithmetic progression of
length Ω(εN ε2δ3), fully contained in A+B + C.

Having introduced the lemmas we can prove the following.

Theorem 2.5. Let a1x1+. . .+akxk = 0 be an equation of integer coefficients and I ⊆ {1, . . . , k}
be such that

∑
i∈I ai = 0. Suppose that |I| > 3, then

R(n) 6 22O(n2 log6 n)
. (2.1)

The implied constant depends only on the equation.

Proof. Let M =
∑

i∈I |ai|/2 and let [R(n) − 1] = A1 ∪ · · · ∪ An be a partition without a
monochromatic solution to our equation. Set N = R(n)−1, suppose that |A1∩{1, . . . , N/M}| >
N/Mn and for b = |

∑
i 6∈I ai| let again A ⊆ A1 consist of all elements of A1 belonging to the

same residue class modulo b with |A| > |A1|/b. Set also ε = exp(−CMbn log5(Mbn)), where
C > 0 is the constant given by Lemma 2.3.

Suppose that I = {a1, a2, a3} and observe that no Ai contains a solution to the equation

a1x1 + a2x2 + a3x3 + by = 0 .

By Lemma 2.3 there are at least ε|A|2 solutions to the invariant equation

a1x1 + a2x2 + a3x3 = 0.

In other words, 0 has at least ε|A|2 representations in a1·A + a2·A + a3·A, hence by Lemma
2.4 there is a symmetric arithmetic progression P of length Ω(εN ε2/(bn)3) contained in a1·A +
a2·A+a3·A ⊆ {1, . . . , N}. Hence, since the set A1 is free of solutions to the equation considered,
1
b ·P ⊆ A2 ∪ · · · ∪An, so that R(n− 1)� εR(n)ε

2/(Mbn)3 .

The last inequality implies that R(n) 6 R(n−1)O(n3 exp(O(n log5 n))), which proves (2.1). �
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It is worth mentioning that one can obtain even better upper bound for all equations
containing an equation of genus 2. To get still further improvement, instead of arithmetic pro-
gressions we make use of Bohr sets. This reduces roughly one exponent in our bounds, but it
makes all the proofs more complicated. A crucial additive property of dense sets A ⊆ Z/NZ that
influences our approach is that one can guarantee existence of a shift of a large, low dimensional
Bohr sets in A+A+A, but it is just not so for A+A. Therefore, we cannot proceed as in the
proof of Theorem 2.2. On the other hand, one can show that A+A contains a large proportion
of a shift of a low dimensional, large Bohr set, which allows us to overcome this difficulty. Next
sections contain rigorous proofs based on the above ideas.

2.2 Main results based on Bohr sets analysis

Proving the strongest results of ours requires recalling a more sophisticated concept of Bohr
sets, some extra notation and some lemmas. Bohr sets were introduced to modern additive com-
binatorics, beyond the limited setting of the Freiman-type problems, by Bourgain [4] and since
then became a fundamental tool in additive combinatorics. Sanders [18, 19] further developed
the theory of Bohr proving many important results.

Definition 2.6. Let G = Z/NZ be a cyclic group and its dual group be Ĝ w Z/NZ. We define
the Bohr set with frequency set Γ ⊆ Ĝ and width parameter γ ∈ (0, 2] to be the set

B(Γ, γ) = {x ∈ G : ∀t∈Γ

∥∥∥ tx
N

∥∥∥ 6 γ} .
Also, we call dimB = |Γ| the dimension of the Bohr set B.

An important property of Bohr sets to mention is that c·B(Γ, γ) = B(c−1·Γ, γ). Further-
more, for η > 0 and a Bohr set B = B(Γ, γ) by Bη we mean the Bohr set B(Γ, ηγ).

The above definition and the three lemmas below are pretty standard, hence we refer the
reader to [23] for a more complete account.

Lemma 2.7. For every γ > 0 we have

γ|Γ|N 6 |B(Γ, γ)| 6 8|Γ|+1|B(Γ, γ/2)| .

The size of Bohr sets can vary significantly even for small changes of the width function,
which is the motivation for the following definition.

Definition 2.8. We call a Bohr set B(Γ, γ) regular if for every η, |η| 6 1/(100|Γ|), we have

(1− 100|Γ||η|)|B| 6 |B1+η| 6 (1 + 100|Γ||η|)|B|.

Bourgain [4] showed that regular Bohr sets are ubiquitous.

Lemma 2.9. For every Bohr set B(Γ, γ) there exists 1
2γ 6 γ

′ 6 γ such that B(Γ, γ′) is regular.

The most important consequence of regularity of a Bohr set is expressed by the following
lemma.

7



Lemma 2.10 ([5, Lemma 3.16]). Let B be a d-dimensional, regular Bohr set. Suppose that
S ⊆ Bε and ε < κ/(100d). Then for every set A ⊆ B, we have

‖µB ·A− (µB ∗ µS) ·A‖1 < 2κ . (2.2)

An immediate consequence of the above lemma is the following.

Lemma 2.11. Let B be a d-dimensional regular Bohr set, let A ⊆ B and µB(A) = δ. Suppose
that S ⊆ Bε and ε < κδ/(200d). Then

1

|B|
∑
x∈B

µS(A+ x) > (1− κ)δ .

Proof.

δ =
∑
x∈B

µB(x)A(x)

6 ‖µB ·A− µB ∗ µS ·A‖1 +
∑
x∈B

(µB ∗ µS)(x)A(x)

6 κδ +
1

|B|
∑
x∈B

(µS ∗ (−A))(x) .

�

The above is pretty standard and we will refer to it in course of proving the theorems.

Proof of Theorem 1.3.

The following lemma is due to Sanders.

Lemma 2.12 ([18, Lemma 6.4]). Let B = B(Γ, γ) be a d-dimensional regular Bohr set and
let A ⊆ B and µB(A) = δA > δ. Then either A − A contains (1 − α) fraction of a regular
Bohr set Bρ, where ρ � δ4/d and ρ does not depend on A, or there is a regular Bohr set
B′ = B(Γ ∪ Λ, γ′) and x such that µB′(A + x) > 1.01δA. Furthermore, |Λ| = O(δ−2 log(1/α))
and γ′ � γδ6/(d3 log(1/α)).

It is important to realize that the Bohr set mentioned in the first alternative of the lemma
can be chosen universally, i.e. independently of the set A. This follows from Sanders’s proof of
the lemma, although he does not state it this way. We will make use of this property when we
apply the lemma to several sets Ai simultaneously.

Proof of Theorem 1.3. Clearly, it is enough to consider an equation of the form

ax− ay + bz = 0

with a, b > 0. Suppose that [N ] = A1 ∪ · · · ∪ An is a solution free partition. Let p be a prime
between (2a+ b)N and 2(2a+ b)N . Then each color class is solution free in Z/pZ.
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Let δ = 1/(3n) and ε = n−2. We build the proof around an iterative procedure and
during its execution we keep track of several variables: a subset I ⊆ [n], a regular Bohr set
B = B(Γ, γ), counters Counti and the aggregated value Total =

∑
Counti. Also, we make the

following invariants hold:

I0 ∀i 6∈I Counti = 0

I1 ∀i∈I µab·B(a·Ai + xi) > 1.01Counti · δ2 + (O(n log n)− Total)ε for some xi

I2 B = B(Γ, γ) is regular, |Γ| = O(Total · n2 log n) and γ � n−O(Total)

The aim that the procedure is supposed to pursue is to make the following conditions hold:

C1 ∀i∈I µab·B(a·Ai − a·Ai) > 1− δ

C2 ∀i 6∈I µab·B(b·Ai) < δ

To begin with let B = B0 = [−N/a,N/a], I = ∅ and Counti = 0 for all i. Whenever any of the
conditions is violated we perform one of the two operation described below and increase one of
the counters by one.

By the invariant it is clear that this procedure stops after at most O(n log n) steps and,
when it stops, we must have both conditions satisfied. For this reason we allow ourselves to plug
the bound Total = nO(1) into the calculations below. Then, since (a·Ai − a·Ai) ∩ b·Ai = ∅, by
condition (C1) we have

∀i∈I µab·B(b·Ai) < δ .

When combined with condition (C2), we get

µab·B(b·[N ]) < nδ =
1

3
,

which is a contradiction if |B| > 7, because by the initial choice

ab·B ⊆ ab·B0 ⊆ b·[−N,N ]

and therefore µab·B(b·[N ]) = 1
2 −

1
|B| >

1
3 . Hence |B| 6 6 which by Lemma 2.7 implies

N = 2O(n4 log4 n) .

It is now enough to describe what operations are performed in case a condition does not
hold and to verify that the invariants are preserved.

If condition (C2) is violated, then there is i 6∈ I such that µab·B(b·Ai) > δ, which is
equivalent to µa·B(Ai) > δ. Therefore, by Lemma 2.11 we have

µa·(b·Bη)(Ai + xi) > 0.9δ > 1.01
δ

2
+O(n log n)ε

for η = εδ/(4000b|Γ|) = n−O(1) and for some xi. The above implies, for a re-defined xi, that

µab·(a·Bη)(a·Ai + xi) > 1.01
δ

2
+O(n log n)ε .

To finalize the operation we update our variables.
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1. I ← I ∪ {i}

2. B ← a·Bη

3. Counti ← Counti + 1 = 1.

The only invariant that holds now in a not immediately obvious manner is (I1) for I\{i}.
However, we know that it held for the old value of B, of which the new one is a small subset.
Therefore, thanks to the choice of η sufficiently small, Lemma 2.11 guarantees that at the expense
of one ε we may have the invariant satisfied.

If condition (C2) is not violated but condition (C1) is so, we need to distinguish two cases.
The first is that, for ρ = Ω(δ4/|Γ|) = n−O(1), we have condition (C1) satisfied for Bρ and the
family (Ai)i∈I ; the second is the opposite, which by Lemma 2.12 implies that some density
increment is possible for one of the sets Ai for i ∈ I.

Let us now consider the first case. If condition (C2) remains satisfied for the resulting Bohr
set Bρ the procedure stops with

1. B ← Bρ.

Otherwise, for Bρ and some i 6∈ I, we repeat the operation described for the case of condition
(C2) being violated. This results in the following.

1. I ← I ∪ {i}

2. B ← a·Bηρ

3. Counti ← Counti + 1 = 1.

In the only case remaining there is some i ∈ I such that µab·Bρ(a·Ai − a·Ai) < 1 − δ. By
Lemma 2.12 there is a regular Bohr set B′ = B(Γ′, γ′) ⊆ Bη and x such that µab·B′(a·Ai + x) >
1.01µab·B(a·Ai + xi). Furthermore, dimB′ = dimB +O(δ−2 log(1/δ)) = dimB +O(n2 log n) and
γ′ � γδ6/(|Γ|3 log(1/δ)) = γ · n−O(1). Therefore, we update the variables accordingly:

1. B ← B′

2. Counti ← Counti + 1.

Again, like in the first case considered, Lemma 2.11 guarantees that the invariants keep being
satisfied. �

Proof of Theorem 1.4.

The lemma below is what really stands behind proofs of upper bounds for equations with many
variables and we will also make use of it in the proof of Theorem 1.5. This is a local variant of,
established in [19], Sanders’s efective version of Bogolyubov’s lemma.

Lemma 2.13 ([21, Theorem 5.2]). Let ε ∈ (0, 1] be a real number. Let A and S be subsets
of regular Bohr sets B and Bε, respectively, where ε 6 1/(100d) and d = dimB. Suppose that
µB(A), µBε(S) > δ. Then A−A+ S − S contains a regular Bohr set B̃ ⊆ B, such that dimB̃ =
d+O(log4(1/δ)) and

|B̃| > exp(−O(d log d+ d log(1/ε) + log4(1/δ) log d+ log5(1/δ) + d log(1/δ)))|B| . (2.3)
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This lemma is proved in [21] for pairs of possibly different sets S, S′ and T, T ′. It is precisely
this that stands behind the resulting Bohr set B̃ being translated in the original statement of
the lemma. One can check that in the symmetric case of ours a genuine non-translated set B̃
can be found.

Next two lemmas will serve as a main iterative block of Lemma 2.16. The first one was
proved by Sanders and is a local version of the Heath-Brown-Szemeredi density increment
method.

Lemma 2.14 ([20, Lemma 3.8]). Let 0 < η, ε 6 1. Let A ⊆ B and S ⊆ Bε be such that
µB(A) = δ and µBε(S) = τ for a d-dimensional regular Bohr set B. If∑

r∈Spec η(S)

|Â(r)|2 > (1 + ν)|A|2 ,

then there is a regular Bohr set B′ ⊆ Bε of dimension dimB′ = d + O(η−2 log(1/τ)) and
cardinality

|B′| >
(

η

2d log(1/τ)

)d+O(η−2 log(1/τ))

|Bε|

such that µB′(A+ x) > δ(1 + Ω(ν)) for some x.

Lemma 2.15. Let B ⊆ Z/NZ be a regular d-dimensional Bohr set and ε < c/100d for 1/64 <
c < 1/32. If A,A′ ⊆ B and S, S′ ⊆ Bε, and

µB(A), µB(A′), µBε(S), µBε(S
′) > δ ,

then either there is x ∈ B1+ε such that

(A ∗ S)(x), (A′ ∗ S′)(−x) >
1

10
δ2|Bε| ,

or there is a regular Bohr set B′ ⊆ Bε such that dimB′ = dimB +O(δ−1 log(1/δ)),

|B′| �
( δ

2d log(1/δ)

)d+O(δ−1 log(1/δ))
|Bε|

and µB′(A+ y) > (1 + Ω(1))δ or µB′(A
′ + y) > (1 + Ω(1))δ for some y.

Proof. We have A + S,A′ + S′ ⊆ B1+ε and, by regularity, |B1+ε| 6 (1 + c)|B|. Let us assume
that there is no x satisfying the property required, i.e. for all x ∈ B1+ε we have either

(A ∗ S)(x) <
1

10
δ2|Bε| or (A′ ∗ S′)(x) <

1

10
δ2|Bε|.

By symmetry we may assume that (A∗S)(x) < 1
10δ

2|Bε| for at least 1
2 |B1+ε| elements x ∈ B1+ε.

Let us denote the set of these x’s by X.
Therefore ∑

x∈B1+ε\X

(A ∗ S)(x) >
∑

x∈B1+ε

(A ∗ S)(x)− (δ2/10)|B1+ε||Bε|

> |A||S| − ((1 + c)/10)|A||S| > 4

5
|A||S|,
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hence ∑
x∈B1+ε\X

(A ∗ S)(x)2 >
(4

5 |A||S|)
2

1
2 |B1+ε|

>
(4

5 |A||S|)
2

1+c
2 |B|

>
6|A|2|S|2

5|B|
=

6

5
δ|A||S|2 .

It follows by Parseval’s formula that

1

N

N−1∑
r=0

|Â(r)|2|Ŝ(r)|2 >
∑

s∈B1+ε\X

(A ∗ S)(x)2 >
6

5
δ|A||S|2

and, by the definition of spectrum and Parseval’s formula,

1

N

∑
r 6∈Spec η(S)

|Â(r)|2|Ŝ(r)|2 6 (η|S|)2 · 1

N

∑
r∈ZN

|Â(r)|2 = cδ|S|2|A|,

for η = (cδ)1/2. Therefore, as |Ŝ(r)| 6 |S|,∑
r∈Spec η(S)

|Â(r)|2 > 1

|S|2
∑

r∈Spec η(S)

|Â(r)|2|Ŝ(r)|2 > 7

6
|A|2.

The proof concludes with application of Lemma 2.14. �

Lemma 2.16. Let B be a regular d-dimensional Bohr set in Z/NZ such that dimB = d. Suppose
that A ⊆ Z/NZ is such that µB(A) = δ and it contains no solution to the equation

b1x1 + b2x2 + b3x3 + b4x4 + bx = 0

with b1 + b2 + b3 + b4 = 0. Then there exists a regular Bohr set T ⊆ B disjoint from A such that

dimT = dimB +O(δ−1 log2(1/δ))

and

|T | > exp(−O(d log d log2(1/δ) + d log3(1/δ) + log d · δ−1 log4(1/δ) + δ−1 log5(1/δ)))|B| . (2.4)

The implied constants depend only on the equation considered.

Proof. Let M = max |bi|, 1 + c be the density increment factor given by Lemma 2.15, which we
assume to be smaller than 2, and c1, c2 > 0 be constants small enough for the argument below
to work. Set ε1 = c1δ/(Md) and ε2 = c2δ

2/(Md).
Let us consider the Bohr sets

B1 =
1

b1
·Bε1 , B2 =

1

b2
·Bε2 , B3 =

1

b3
·Bε1 , B4 =

1

b4
·Bε2 .

By a proper choice of constants c1 and c2 we may assume that they are all regular Bohr sets of
dimension d and, by Lemma 2.7, |Bi| = Ω(δ/d)6d+6|B|. These sets are all subsets of Bc1δ/d, so
by Lemma 2.11 we have

1

|B|
∑
x∈B

4∑
i=1

(µBi ∗A)(x) > (4− c

3
)δ .

12



Therefore, either for some x ∈ B and for all i = 1, . . . , 4 we have

µBεi (bi·(A+ x)) = µBi(A+ x) > (1− c

2
)δ ,

with the convention ε3 = ε1 and ε4 = ε2, or µBi(A+x) > (1 + c
18)δ for some i. In the latter case

we repeat the above reasoning for the pair A+ x,Bi.
Since the density is naturally bounded from above, after at most O(log(1/δ)) iterative steps

we end up with some A+ x and some Bohr set B′ ⊆ B such that µB′(A+ x) > δ and for some
y and all i = 1, . . . , 4 we have

µB′εi
(bi·(A+ y)) = µB′i(A+ y) > (1− c

2
)δ .

Also, dimB′ = d and
|B′| = Ω(δ/d)O(d log(1/δ))|B| .

Hence, by Lemma 2.15 we have either

µB′ε2
(b2·(A+ y) ∩ (x− b1·(A+ y))) > 0.1((1− c

2
)δ)2 > 0.01δ2

and
µB′ε2

(b4·(A+ y) ∩ (−x− b3·(A+ y))) > 0.01δ2

for some x, or there is a regular Bohr set B′′ ⊆ B′ ⊆ B with the following properties:

dimB′′ = dimB′ +O(δ−1 log(1/δ)),

|B′′| >
( δ

2d log(1/δ)

)d+O(δ−1 log(1/δ))
|B′| >

( δ

2d log(1/δ)

)d+O(d log(1/δ)+δ−1 log(1/δ))
|B| .

and, for some z, we have µB′′(A+ z) > (1 + c) · (1− c
2)δ = (1 + Ω(1))δ.

Repetition of the above procedure at most O(log(1/δ)) times results in a translate A + x
and a regular Bohr set B̃ ⊆ B such that

µB̃ε2
(b2·(A+ y) ∩ (x− b1·(A+ y))) > 0.01δ2

and
µB̃ε2

(b4·(A+ y) ∩ (−x− b3·(A+ y))) > 0.01δ2

for some x. Furthermore B̃ε2 is a regular Bohr set of dimB̃ = d+O(δ−1 log2(1/δ)), and

|B̃| >
(δ
d

)O(d log2(1/δ)+δ−1 log2(1/δ))
|B| .

Let A′ = b2·(A + y) ∩ (x − b1·(A + y)) and S = b4·(A + y) ∩ (−x − b3·(A + y)). We are
almost done but we cannot yet apply Lemma 2.13. One last application of Lemma 2.11 shows
that there is some s such that µB̃ε3

(S + s) > δ2/101 for ε3 = ε3
1. Write S′ = (S + s) ∩ B̃ε3 .

Applying Lemma 2.13 we obtain a Bohr set T ′ such that

T ′ ⊆ A′ −A′ + S′ − S′ ⊆ 2B̃ε2 + 2B̃ε3 ⊆ B

13



and

T ′ ⊆ A′ −A′ + S′ − S′ ⊆ b1A+ b2A+ b3A+ b4A .

In particular, the above implies that T = T ′1/b is disjoint from A, because A is free of solutions
to the equation by assumption.

The dimension of T is

dimT = dimB̃ +O(log4(1/δ)) = dimB +O(δ−1 log2(1/δ))

and its cardinality is

|T | > exp(−O(d log d+ d log(1/δ) + log d log4(1/δ) + log5(1/δ))))|B̃ε2 |
> exp(−O(d log d log2(1/δ) + d log3(1/δ) + log d · δ−1 log4(1/δ) + δ−1 log5(1/δ)))|B| .

�

Proof of Theorem 1.4. Suppose that [N ] = A1 ∪ · · · ∪ An is a solution free partition. Let p be
a prime between (|b1| + |b2| + |b3| + |b4| + b)N and 2(|b1| + |b2| + |b3| + |b4| + b)N . Then each
color class is solution free in Z/pZ. We start with T0 = [−N,N ] and let A1 be any class with
µT 0(A1) > 1/(3n). Iterative application of Lemma 2.16 gives after k steps a Bohr set Tk ⊆ Tk−1

that is disjoint from A1 ∪ · · · ∪Ak and

|Tk| � exp(−O(kn log5 n))|Tk−1| � exp(−O(k2n log5 n))N .

Clearly, Tn does not contain any element from A1 ∪ · · · ∪An. In particular Tn = {0}, so that

1 = |Tn| � exp(−O(n3 log5 n))N,

and therefore

R(n)� 2Cn
3 log5 n ,

which completes the proof. �

Proof of Theorem 1.5.

A careful reader might have noticed that a proof of Theorem 1.5 can be deduced from that
of Theorem 1.4, because we get sets S and T for free in the genus 2 case when b2 = −b1 and
b4 = −b3. We extract these essentials here.

The lemma we are about to prove constitutes the main iterative step of the proof of Theorem
1.5.

Lemma 2.17. Let b1, b2 and b be positive integers and let B = B(Γ, γ) be a regular Bohr set of
dimension d. Suppose that A ⊆ B,µB(A) = δ, does not contain any solution to the equation

b1x1 − b1x2 + b2x3 − b2x4 + by = 0 .

14



Then there exists a regular Bohr set T ⊆ B disjoint from A such that

dimT = dimB +O(log4(1/δ))

and

|T | > exp(−O(d log d+ log4(1/δ) log d+ log5(1/δ) + d log(1/δ)))|B| . (2.5)

The implied constants depend only on b1, b2 and b.

Proof. Choose a constant 1/64 6 c 6 1/32 such that Bε is a regular Bohr set, where ε =
cδ/(100b1b2d). Put Bi = bi·Bε, i = 1, 2, B′ = b1b2·Bε. By Lemma 2.11 we have

1

|B|
∑
x∈B

(µB1 ∗A)(x) > (1− 2c)δ >
1

2
δ .

Therefore for some x

(µB1 ∗A)(x) = µB1(A+ x) >
1

2
δ ,

hence

µB′(b2(A+ x)) = µB1(A+ x) >
1

2
δ .

Again choose a constant 1/64 6 c′ 6 1/32 such that B′ε′ is a regular Bohr set, where ε′ =
c′δ/(100b1b2d). Using the same argument we find y such that

µB′
ε′

(b1·(A+ y)) >
1

2
δ .

Therefore, by Lemma 2.13

b1·A− b1·A+ b2·A− b2·A

contains a Bohr set B̃ ⊆ B′ of dimension dimB + O(log4(1/δ)) that satisfies (2.3). Since A is
a solution free set it follows that b·A is disjoint from B̃, hence A is disjoint from T := B̃1/b.
Observe that

T ⊆ B′ = b1b2·Bε ⊆ Bb1b2ε ⊆ B .

To finish the proof it is enough to establish (2.5). By Lemma 2.7 and Lemma 2.13 we have

|T | > exp(−O(d+ log4(1/δ)))|B̃|
> exp(−O(d log d+ d log(1/ε) + log4(1/δ) log d+ log5(1/δ) + d log(1/δ)))|B′|
> exp(−O(d log d+ log4(1/δ) log d+ log5(1/δ) + d log(1/δ)))|B| .

Finally the assertion follows by Lemma 2.9 and Lemma 2.7. �
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Proof of Theorem 1.5. We proceed similarly as in the proof of Theorem 1.4. Suppose that
{1, . . . , N} = A1∪· · ·∪An is a solution free partition and let p be a prime between (2c1+2c2+b)N
and 2(2c1+2c2+b)N . Then each color class is solution free in Z/pZ. We start with T 0 = [−N,N ]
and let A1 be any class with µT 0(A1) > 1/(3n). Iterative application of Lemma 2.17 gives after
k steps a Bohr set Tk ⊆ Tk−1 of dimension O(k log4 n), that is disjoint from A1 ∪ · · · ∪Ak and

|Tk| > exp(−O(k log5 n))|Tk−1| .

Since Tn ∩ (A1 ∪ · · · ∪An) = ∅ it follows that Tn = {0}. Hence

1 = |Tn| > exp(−O(n2 log5 n))N,

and the assertion follows. �

3 Schur-like numbers

In this section we prove Theorem 1.6, which lowers an upper bound on Schur-like numbers below
the threshold established by a natural argument presented in the beginning of Subsection 2.1.

To begin with we recall a fundamental result of Plünnecke and Ruzsa.

Lemma 3.1 (Plünnecke-Ruzsa). Suppose that A is a subset of an abelian group and |A+B| 6
K|B|. Then for all natural numbers k, l > 0 we have

|kA− lA| 6 Kk+l|B|,

where kA and lA denote iterated sumsets.

We shall also need the following two lemmas.

Lemma 3.2. Suppose that {1, . . . , N} = A1∪· · ·∪An is a partition into sum-free sets such that
|A1| > . . . > |An| and set σk =

∑
i>k |Ai|. Then we have

|Ak| >
|A1|

(k − 1)!
− 2(σk + 1).

Proof. We use a classical Schur’s argument. Let A1 = {a1, . . . , at}< and notice that all numbers
a2 − a1, . . . , at − a1 belong to A2 ∪ · · · ∪ An. At most σk of these elements belong to

⋃
i>k Ai,

hence B2 = {a2 − a1, . . . , at − a1} ∩Ai2 has

|B2| >
|A1| − 1− σk

k − 1

elements for some 2 6 i2 6 k. Therefore, by repeated application of the above argument, we
have

|Bk| >
|A1|

(k − 1)!
− (σk + 1)

k−1∑
i=1

1

i!
>
|A1|

(k − 1)!
− 2(σk + 1) ,

and the assertion follows, because |Ak| > |Bj | > |Bk| for j such that ij = k. �
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Lemma 3.3. Suppose that N < S2(n). Then there exists a partition {1, . . . , N} = A1 ∪ · · · ∪An
into 2-sum-free sets such that |A1| > . . . > |An| and⋃

i>k

Ai ⊆ (3Ak −Ak) ∪ (2Ak − 2Ak) ,

for every 1 6 k 6 n.

Proof. Let {1, . . . , N} = A1 ∪ · · · ∪ An be any maximal 2-sum-free partition with respect to
the lexicographical order of (|A1|, . . . , |An|). Since no element a ∈

⋃
i>k Ai can be added to Ak

without spoiling the 2-sum-free property, we have
⋃
i>k Ai ⊆ (3Ak −Ak) ∪ (2Ak − 2Ak). �

The following theorem is the main result of this section.

Proof of Theorem 1.6. Assume that our partitioning satisfies the assertion of Lemma 3.3. First,
we show that there exist x2, . . . , xk such that

|(A1 −A1) ∩ (A2 −A2 + x2) ∩ · · · ∩ (Ak −Ak + xk)| =
(

Ω(n−
9
10 )
)k
N , (3.1)

for some k � logn
log logn . To this end we shall prove that the sets Ai−Ai, for i = 1, . . . , k, are large.

The proof distinguishes two cases.

First, suppose that |A1| 6 N/nc, for some appropriate positive c. Then there are at least
1
2n

c classes with at least N/2n elements each. By Lemma 3.3, for every l, we have

|3Al −Al|+ |2Al − 2Al| >
∑
i>l

|Ai| > N − l
N

nc
.

Therefore, by the Plünnecke-Ruzsa inequality,

|Al −Al| � N1/4|Al|3/4 �
N

n3/4

for all l 6 k = 1
2n

c.

Next, we assume that |A1| > N/nc and set k = c logn
log logn . If σk < N/n2c, then by Lemma 3.2,

|Ak| � N/n2c and, immediately, |Al − Al| > |Ak| � N/n2c for all l 6 k. If σk > N/n2c then it
follows that |Ak| > |Ak+1| > σk/n > N/n1+2c. Thus, by Lemma 3.3 for every 1 6 l 6 k we have

|3Al −Al|+ |2Al − 2Al| >
∑
i>k

|Ai| >
N

n2c
,

so that by the Plünnecke-Ruzsa inequality

|Al −Al| > (N/n2c)1/4|Ak|3/4 �
N

n3/4+2c
.
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In either case we have that |Al − Al| � N
n9/10 for l 6 k = c logn

log logn . Since the expected size
of the set

(A1 −A1) ∩ (A2 −A2 + x2) ∩ · · · ∩ (Ak −Ak + xk) ∩ {1, . . . , N},

for xi chosen uniformly at random from {−2N + 1, . . . , 2N − 1}, is at least (Ω(n−
9
10 ))kN , one

obtains (3.1) for some choice of xi’s.
At this point we drop the indexes corresponding to sets Ak+1, . . . , An (we will re-enumerate

them later on) and we follow Schur’s argument again, starting with the set

Ck = {c1, . . . , cq}< = (A1 −A1) ∩ (A2 −A2 + x2) ∩ · · · ∩ (Ak −Ak + xk) ∩ {1, . . . , N}

given by (3.1). Observe that cu− cv ∈ 2Ai−2Ai, for all 1 6 u < v 6 q and 1 6 i 6 k. Therefore,
as all the sets A1, . . . , Ak are 2-sum-free, we have

c2 − c1, . . . , cq − c1 6∈ A1 ∪ · · · ∪Ak.

At least q′ > (q − 1)/(n − k) of the above elements, call them Ck+1 = {c′1, . . . , c′q′}<, lie in the
same partition class, say Ak+1. It follows by the above argument that

c′2 − c′1, . . . , c′q′ − c′1 6∈ A1 ∪ · · · ∪Ak+1

Iterating this procedure, we obtain in the last step a set Cn ⊆ An such that |Cn| � q/(n− k)!
and (Cn −minCn) ∩ (A1 ∪ · · · ∪An) = ∅. Thus |Cn| 6 1 and we infer that

N � n
9
10
k(n− k)!

for some k � logn
log logn . �

4 Van der Waerden number W(3, k)

Recall, that W(3, k) is the smallest integer N with the property that for every 2-coloring
{1, . . . , N} = B ∪ R there is a 3-term arithmetic progression in B or a k-term arithmetic
progression in R. Our last result provides a new upper bound for W(3, k). The proof of Theorem
4.2 is due to Green [13, Theorem 24]. The improvement relies on the fact that instead of Green’s
theorem on arithmetic progressions in sumsets we use a result proved in [7].

Lemma 4.1 ([7, Corollary 1]). Let A,B ⊆ {1, . . . , N} and |A||B| > 6N2−2/(t−1) for an integer
t. Then A+B contains an arithmetic progression of length t.

Theorem 4.2.
W(3, k) 6 2O(k log k) .

Proof. Set N = W(3, k) − 1 and let {1, . . . , N} = B ∪ R be a partition such that B does
not contain any 3-term arithmetic progression and R does not contain any k-term arithmetic
progression. Clearly, |R| 6 (1− 1/k)N, so that |B| > N/k. Let S be the more numerous parity
class in B, hence |S| > N/2k. Further, let S1 be the set of N/4k smallest elements of S and set
S2 = S \ S1. Since

|S1||S2| � N
2− log k

logN

18



it follows by Lemma 4.1 that S1+S2 contains an arithmetic progression of length c logN
log k . However,

1
2 ·(S1 + S2) ⊆ {1, . . . , N} \ B = R, because otherwise there is a 3-term arithmetic progression
in B. Therefore,

logN

log k
� k,

which completes the proof. �
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